Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential mi...Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential micronutrients for plants and human body with crucial biological functions,in particular,Se is significant for human health and considered as“the king of anti-cancer”.As these elements required by human or plants are mainly absorbed from soil directly or indirectly,therefore,it is important to understand the contents and distributions of them in the soil of cultivated land for guiding agricultural production.In this work,low-density geochemical survey at the scale of 1∶1000000 was carried out in Tanzania,and the results show that the concentrations of B,Zn and Se in stream sediments are low and their distributions are heterogeneous.According to the distributions of geological units,the existing cultivated land resources can be divided into five regions in Tanzania.Compared with the national background values,the concentrations of B,Zn and Se are insufficient overall but enriched locally in these regions.In general,element concentrations in stream sediments and soil have a positive correlation because of their similar sources,which is essential in agriculture application.Based on the information provided by low-density geochemical data and maps,the Se-sufficient and Se-rich regions were delineated in Tanzania,where can be used to develop Se-rich industries.Finally,this paper believes that geochemical survey is a powerful tool for cultivated land evaluation,agriculture management and land development.展开更多
The present paper investigates the stream sediment geochemistry, behavior of gold and associated elements, delineates Au-anomalous sites and defines related sources in the Wadi Umm Rilan area. Fifty three major and tr...The present paper investigates the stream sediment geochemistry, behavior of gold and associated elements, delineates Au-anomalous sites and defines related sources in the Wadi Umm Rilan area. Fifty three major and trace elements were analyzed using ICP-MS and treated applying various statistical and mapping techniques. The results showed a significant difference of mean and median Au and most chemical elements in the three portions of the area, and higher values were recorded in the western portion. Furthermore, Au-anomalous sites appeared in upper and lower parts of the Wadi Umm Rilan, along the tributaries of metavolcanic unit and near granitoid contacts. This indicates the main source of Au mineralization is related to emplacement of granitoid plutons and accompanying hydrothermal solutions. There are significant indications for the presence of more than one mineralization event forming a probable single major episode of mineralization in the area, involving Au, Pb and U mineralizations. Geology, geomorphologic aspects and weathering processes could control stream sediment geochemistry, anomalies of Au and associated elements, elemental association and their dispersion patterns. Therefore, the area is fruitful and regarded as a promising target for Au exploration, using Ag, As, Sb, Cd, Cs, and TI as pathfinder elements.展开更多
Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure an...Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.展开更多
The increase in the number of liver related disease patients from north western region of Ethiopia has been an environmental health issue of national concern. As the disease is restricted to a specific geographical te...The increase in the number of liver related disease patients from north western region of Ethiopia has been an environmental health issue of national concern. As the disease is restricted to a specific geographical terrain, particularly to Shire area, northwestern dry zone of the country, detail research studies are required to identify possible etiology and risk factors. The aim of the study is to determine the level of trace element and heavy metal concentrations and distributions in water and stream sediments of the area and identify the possible sources in relation to human health. During the study, geochemical sampling (20 water, 20 stream sediment and 6 rock samples) was carried out in March 2011. The collected samples were analyzed for their major and trace element contents using ICP-MS, ICP-OES, Ion Chromatography (IC), and XRF. Analytical data were organized and treated using Excel, SPSS, ArcGIS and Aquachem softwares. Analytical data results with respect to trace element contents in surface and ground waters are compared with the Maximum Acceptable Concentration or Maximum Allowable Concentration (MAC) of World Health Organization (WHO) and Ethiopian standards for drinking water. The comparison reveals that there are problematic elements that pass over the quality standards set for drinking water. One of these is: Bromine (Br), for which 100% all samples have value above 0.01 mg/l and up to 1.475 mg/l. Other problematic elements including aluminum (Al)—30%, fluorine (F)—20%, arsenic (As)—10%, and nitrate (NO3)—10% are examples of elements which have above WHO-MAC for drinking water. Selenium (Se) deficiency may be the other problematic element in the area for its deficiency is associated with liver damage and heart muscle disorder. The metal contaminations (i.e. heavy metals) were also evaluated by world geochemical background value in average shale and sediment quality guideline proposed by US EPA. The concentration of Co and Cr exceeded average shale value at most sample stations indicated that these stations ware in potential risk. Geochemical factors are mostly considered to explain the etiology of this liver related disease.展开更多
To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second ...To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second National Soil Survey data and Normalized Difference Vegetation Index(NDVI)were analyzed.The areas of neutral and alkaline soil decreased by 21100 km^(2)and 30500 km^(2),respectively,while that of strongly alkaline,extremely alkaline,and strongly acidic soil increased by 19600 km^(2),18200 km^(2),and 15500 km^(2),respectively,during the past 30 years.NDVI decreased with the increase of soil pH when soil pH>8.0,and it was reversed when soil pH<5.0.There were significant differences in soil pH with various surface cover types,which showed an ascending order:Arbor<reed<maize<rice<high and medium-covered meadow<low-covered meadow<Puccinellia.The weathering products of minerals rich in K_(2)O,Na_(2)O,CaO,and MgO entered into the low plain and were enriched in different parts by water transportation and lake deposition,while Fe and Al remained in the low hilly areas,which was the geochemical driving mechanism.The results of this study will provide scientific basis for making scientific and rational decisions on soil acidification and salinization.展开更多
As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coeffic...As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coefficients are computed from the values of two elements,which reflect only the correlation at a global level.Thus,the spatial details of the correlation structure are ignored.In fact,an element combination anomaly often exists in geological backgrounds,such as on a fault zone or within a lithological unit.This anomaly may cause some combination of anomalies that are submerged inside the overall area and thus cannot be effectively extracted.To address this problem,we propose a local correlation coefficient based on spatial neighbourhoods to reflect the global distribution of elements.In this method,the sampling area is first divided into a set of uniform grid cells.A moving window with a size of 3×3 is defined with an integer of 3 to represent the sampling unit.The local correlation in each unit is expressed by the Pearson correlation coefficient.The whole area is scanned by the moving window,which produces a correlation coefficient matrix,and the result is portrayed with a thermal diagram.The local correlation approach was tested on two selected geochemical soil survey sites in Xiao Mountain,Henan Province.The results show that the areas of high correlation are mainly distributed in the fault zone or the known mineral spots.Therefore,the local correlation method is effective in extracting geochemical element combination anomalies.展开更多
基金the cooperation projects between China Geological Survey and geological survey institutions of Africa(DD20190439,DD20160108,DD20221801)。
文摘Tanzania is located in eastern Africa with a predominantly agricultural ecomomy,the potential for developing and utilizing cultivated land are promising,but scientific guidance is required.B,Zn and Se are essential micronutrients for plants and human body with crucial biological functions,in particular,Se is significant for human health and considered as“the king of anti-cancer”.As these elements required by human or plants are mainly absorbed from soil directly or indirectly,therefore,it is important to understand the contents and distributions of them in the soil of cultivated land for guiding agricultural production.In this work,low-density geochemical survey at the scale of 1∶1000000 was carried out in Tanzania,and the results show that the concentrations of B,Zn and Se in stream sediments are low and their distributions are heterogeneous.According to the distributions of geological units,the existing cultivated land resources can be divided into five regions in Tanzania.Compared with the national background values,the concentrations of B,Zn and Se are insufficient overall but enriched locally in these regions.In general,element concentrations in stream sediments and soil have a positive correlation because of their similar sources,which is essential in agriculture application.Based on the information provided by low-density geochemical data and maps,the Se-sufficient and Se-rich regions were delineated in Tanzania,where can be used to develop Se-rich industries.Finally,this paper believes that geochemical survey is a powerful tool for cultivated land evaluation,agriculture management and land development.
文摘The present paper investigates the stream sediment geochemistry, behavior of gold and associated elements, delineates Au-anomalous sites and defines related sources in the Wadi Umm Rilan area. Fifty three major and trace elements were analyzed using ICP-MS and treated applying various statistical and mapping techniques. The results showed a significant difference of mean and median Au and most chemical elements in the three portions of the area, and higher values were recorded in the western portion. Furthermore, Au-anomalous sites appeared in upper and lower parts of the Wadi Umm Rilan, along the tributaries of metavolcanic unit and near granitoid contacts. This indicates the main source of Au mineralization is related to emplacement of granitoid plutons and accompanying hydrothermal solutions. There are significant indications for the presence of more than one mineralization event forming a probable single major episode of mineralization in the area, involving Au, Pb and U mineralizations. Geology, geomorphologic aspects and weathering processes could control stream sediment geochemistry, anomalies of Au and associated elements, elemental association and their dispersion patterns. Therefore, the area is fruitful and regarded as a promising target for Au exploration, using Ag, As, Sb, Cd, Cs, and TI as pathfinder elements.
基金was performed within the framework of the State Assignment Projects No.0284–2021-0002.
文摘Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.
文摘The increase in the number of liver related disease patients from north western region of Ethiopia has been an environmental health issue of national concern. As the disease is restricted to a specific geographical terrain, particularly to Shire area, northwestern dry zone of the country, detail research studies are required to identify possible etiology and risk factors. The aim of the study is to determine the level of trace element and heavy metal concentrations and distributions in water and stream sediments of the area and identify the possible sources in relation to human health. During the study, geochemical sampling (20 water, 20 stream sediment and 6 rock samples) was carried out in March 2011. The collected samples were analyzed for their major and trace element contents using ICP-MS, ICP-OES, Ion Chromatography (IC), and XRF. Analytical data were organized and treated using Excel, SPSS, ArcGIS and Aquachem softwares. Analytical data results with respect to trace element contents in surface and ground waters are compared with the Maximum Acceptable Concentration or Maximum Allowable Concentration (MAC) of World Health Organization (WHO) and Ethiopian standards for drinking water. The comparison reveals that there are problematic elements that pass over the quality standards set for drinking water. One of these is: Bromine (Br), for which 100% all samples have value above 0.01 mg/l and up to 1.475 mg/l. Other problematic elements including aluminum (Al)—30%, fluorine (F)—20%, arsenic (As)—10%, and nitrate (NO3)—10% are examples of elements which have above WHO-MAC for drinking water. Selenium (Se) deficiency may be the other problematic element in the area for its deficiency is associated with liver damage and heart muscle disorder. The metal contaminations (i.e. heavy metals) were also evaluated by world geochemical background value in average shale and sediment quality guideline proposed by US EPA. The concentration of Co and Cr exceeded average shale value at most sample stations indicated that these stations ware in potential risk. Geochemical factors are mostly considered to explain the etiology of this liver related disease.
基金supported by China Geological Survey(DD20230554,DD20230089)the Strategic Priority Research Program of the Chinese Academy of Science(XDA28020302)the funding project of Northeast Geological S&T Innovation Center of China Geological Survey(QCJJ2022-40).
文摘To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second National Soil Survey data and Normalized Difference Vegetation Index(NDVI)were analyzed.The areas of neutral and alkaline soil decreased by 21100 km^(2)and 30500 km^(2),respectively,while that of strongly alkaline,extremely alkaline,and strongly acidic soil increased by 19600 km^(2),18200 km^(2),and 15500 km^(2),respectively,during the past 30 years.NDVI decreased with the increase of soil pH when soil pH>8.0,and it was reversed when soil pH<5.0.There were significant differences in soil pH with various surface cover types,which showed an ascending order:Arbor<reed<maize<rice<high and medium-covered meadow<low-covered meadow<Puccinellia.The weathering products of minerals rich in K_(2)O,Na_(2)O,CaO,and MgO entered into the low plain and were enriched in different parts by water transportation and lake deposition,while Fe and Al remained in the low hilly areas,which was the geochemical driving mechanism.The results of this study will provide scientific basis for making scientific and rational decisions on soil acidification and salinization.
基金supported by the National Natural Science Foundation of China(Nos.41272359,210100069)。
文摘As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coefficients are computed from the values of two elements,which reflect only the correlation at a global level.Thus,the spatial details of the correlation structure are ignored.In fact,an element combination anomaly often exists in geological backgrounds,such as on a fault zone or within a lithological unit.This anomaly may cause some combination of anomalies that are submerged inside the overall area and thus cannot be effectively extracted.To address this problem,we propose a local correlation coefficient based on spatial neighbourhoods to reflect the global distribution of elements.In this method,the sampling area is first divided into a set of uniform grid cells.A moving window with a size of 3×3 is defined with an integer of 3 to represent the sampling unit.The local correlation in each unit is expressed by the Pearson correlation coefficient.The whole area is scanned by the moving window,which produces a correlation coefficient matrix,and the result is portrayed with a thermal diagram.The local correlation approach was tested on two selected geochemical soil survey sites in Xiao Mountain,Henan Province.The results show that the areas of high correlation are mainly distributed in the fault zone or the known mineral spots.Therefore,the local correlation method is effective in extracting geochemical element combination anomalies.