Abstract The non-uniqueness on geodesics and geodesic disks in the universal asymptotic Teichmfiller space AT(D) are studied in this paper. It is proved that if # is asymptotically extremal in [[#]] with h (μ) ...Abstract The non-uniqueness on geodesics and geodesic disks in the universal asymptotic Teichmfiller space AT(D) are studied in this paper. It is proved that if # is asymptotically extremal in [[#]] with h (μ) 〈 h* (μ) for some point ζ∈D, then there exist infinitely many geodesic segments joining [[0]] and [[μ]], and infinitely many holomorphic geodesic disks containing [[0]] and [μ]] in AT(D).展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11371045)
文摘Abstract The non-uniqueness on geodesics and geodesic disks in the universal asymptotic Teichmfiller space AT(D) are studied in this paper. It is proved that if # is asymptotically extremal in [[#]] with h (μ) 〈 h* (μ) for some point ζ∈D, then there exist infinitely many geodesic segments joining [[0]] and [[μ]], and infinitely many holomorphic geodesic disks containing [[0]] and [μ]] in AT(D).