Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their ...Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.展开更多
Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect ...Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect of geographically weighted regression kriging(GWRK)and regression kriging(RK)in a spatial interpolation of regional snow depth.The auxiliary variables are analyzed using correlation coefficients and the variance inflation factor(VIF).Three variables,Height,topographic ruggedness index(TRI),and land surface temperature(LST),are used as explanatory variables to establish a regression model for snow depth.The estimated spatial distribution of snow depth in the Bayanbulak Basin of the Tianshan Mountains in China with a spatial resolution of 1 km is obtained.The results indicate that 1)the result of GWRK's accuracy is slightly higher than that of RK(R^2=0.55 vs.R^2=0.50,RMSE(root mean square error)=0.102 m vs.RMSE=0.077 m);2)for the subareas,GWRK and RK exhibit similar estimation results of snow depth.Areas in the Bayanbulak Basin with a snow depth greater than 0.15m are mainly distributed in an elevation range of 2632.00–3269.00 m and the snow in this area comprises 45.00–46.00% of the total amount of snow in this basin.However,the GWRK resulted in more detailed information on snow depth distribution than the RK.The final conclusion is that GWRK is better suited for estimating regional snow depth distribution.展开更多
In this study the principal component analysis (PCA) and geographically weighted regression (GWR) are combined to estimate the spatial distribution of water requirement of the winter wheat in North China while the eff...In this study the principal component analysis (PCA) and geographically weighted regression (GWR) are combined to estimate the spatial distribution of water requirement of the winter wheat in North China while the effect of the macroand micro-topographic as well as the meteorological factors on the crop water requirement is taking into account. The spatial distribution characteristic of the water requirement of the winter wheat in North China and its formation are analyzed based on the spatial variation of the main affecting factors and the regression coefficients. The findings reveal that the collinearity can be effectively removed when PCA is applied to process all of the affecting factors. The regression coefficients of GWR displayed a strong variability in space, which can better explain the spatial differences of the effect of the affecting factors on the crop water requirement. The evaluation index of the proposed method in this study is more efficient than the widely used Kriging method. Besides, it could clearly show the effect of those affecting factors in different spatial locations on the crop water requirement and provide more detailed information on the region where those factors suddenly change. To sum up, it is of great reference significance for the estimation of the regional crop water requirement.展开更多
为探索适用于海南岛日最低、最高气温空间插值的方法,研究以经度、纬度、海拔、坡度、坡向、海陆距离、NDVI等为环境变量,采用多元线性回归(multiple linear regression,MLR)、地理加权回归(geographically weighted regression,GWRK)...为探索适用于海南岛日最低、最高气温空间插值的方法,研究以经度、纬度、海拔、坡度、坡向、海陆距离、NDVI等为环境变量,采用多元线性回归(multiple linear regression,MLR)、地理加权回归(geographically weighted regression,GWRK)、多元线性回归克里格(multiple linear regression-Kiging,MLRK)和地理加权回归克里格(geographically weighted regression-Kriging,GWRK)等4种方法对海南岛2016年1月1日—6月30日的日最低、最高气温进行了插值。结果表明:4种方法对日最低气温插值的总的平均绝对误差:MLR>GWR>GWRK>MLRK,但GWR、GWRK、MLRK对日最低气温插值的总的平均绝对误差十分接近,对日最高气温有相同的规律。MLRK对日最低、最高气温的总体平均绝对误差分别为0.50℃和0.73℃。GWRK、MLRK对逐日最低气温插值的平均绝对误差也十分接近,对日最高气温也有相同的规律。无论是对日最低气温还是对日最高气温,MLRK、GWRK插值空间分布的主要差异均在站点稀疏的山区。因此,在海南岛,宜采用多元回归克里格(MLRK)对日最低、最高气温进行空间插值。展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.41661099)the National Key Research and Development Program of China(No.Grant 2016YFA0601601)
文摘Satellite-based precipitation products have been widely used to estimate precipitation, especially over regions with sparse rain gauge networks. However, the low spatial resolution of these products has limited their application in localized regions and watersheds.This study investigated a spatial downscaling approach, Geographically Weighted Regression Kriging(GWRK), to downscale the Tropical Rainfall Measuring Mission(TRMM) 3 B43 Version 7 over the Lancang River Basin(LRB) for 2001–2015. Downscaling was performed based on the relationships between the TRMM precipitation and the Normalized Difference Vegetation Index(NDVI), the Land Surface Temperature(LST), and the Digital Elevation Model(DEM). Geographical ratio analysis(GRA) was used to calibrate the annual downscaled precipitation data, and the monthly fractions derived from the original TRMM data were used to disaggregate annual downscaled and calibrated precipitation to monthly precipitation at 1 km resolution. The final downscaled precipitation datasets were validated against station-based observed precipitation in 2001–2015. Results showed that: 1) The TRMM 3 B43 precipitation was highly accurate with slight overestimation at the basin scale(i.e., CC(correlation coefficient) = 0.91, Bias = 13.3%). Spatially, the accuracies of the upstream and downstream regions were higher than that of the midstream region. 2) The annual downscaled TRMM precipitation data at 1 km spatial resolution obtained by GWRK effectively captured the high spatial variability of precipitation over the LRB. 3) The annual downscaled TRMM precipitation with GRA calibration gave better accuracy compared with the original TRMM dataset. 4) The final downscaled and calibrated precipitation had significantly improved spatial resolution, and agreed well with data from the validated rain gauge stations, i.e., CC = 0.75, RMSE(root mean square error) = 182 mm, MAE(mean absolute error) = 142 mm, and Bias = 0.78%for annual precipitation and CC = 0.95, RMSE = 25 mm, MAE = 16 mm, and Bias = 0.67% for monthly precipitation.
基金supported by Projects of International Cooperation and Exchanges NSFC (grant: 41361140361)the Special fund project of Chinese Academy of Sciences (grant: Y371164001)the key deployment project of Chinese Academy of Sciences (Grant No. KZZD-EW-12-2, KZZD-EW12-3)
文摘Snow depth is a general input variable in many models of agriculture,hydrology,climate and ecology.This study makes use of observational data of snow depth and explanatory variables to compare the accuracy and effect of geographically weighted regression kriging(GWRK)and regression kriging(RK)in a spatial interpolation of regional snow depth.The auxiliary variables are analyzed using correlation coefficients and the variance inflation factor(VIF).Three variables,Height,topographic ruggedness index(TRI),and land surface temperature(LST),are used as explanatory variables to establish a regression model for snow depth.The estimated spatial distribution of snow depth in the Bayanbulak Basin of the Tianshan Mountains in China with a spatial resolution of 1 km is obtained.The results indicate that 1)the result of GWRK's accuracy is slightly higher than that of RK(R^2=0.55 vs.R^2=0.50,RMSE(root mean square error)=0.102 m vs.RMSE=0.077 m);2)for the subareas,GWRK and RK exhibit similar estimation results of snow depth.Areas in the Bayanbulak Basin with a snow depth greater than 0.15m are mainly distributed in an elevation range of 2632.00–3269.00 m and the snow in this area comprises 45.00–46.00% of the total amount of snow in this basin.However,the GWRK resulted in more detailed information on snow depth distribution than the RK.The final conclusion is that GWRK is better suited for estimating regional snow depth distribution.
基金supported by the National Basic Research Program of China (2006CB403406)the National Natural Science Foundation of China(51079154)the National HighTech Research & Development Program of China (2011AA100502)
文摘In this study the principal component analysis (PCA) and geographically weighted regression (GWR) are combined to estimate the spatial distribution of water requirement of the winter wheat in North China while the effect of the macroand micro-topographic as well as the meteorological factors on the crop water requirement is taking into account. The spatial distribution characteristic of the water requirement of the winter wheat in North China and its formation are analyzed based on the spatial variation of the main affecting factors and the regression coefficients. The findings reveal that the collinearity can be effectively removed when PCA is applied to process all of the affecting factors. The regression coefficients of GWR displayed a strong variability in space, which can better explain the spatial differences of the effect of the affecting factors on the crop water requirement. The evaluation index of the proposed method in this study is more efficient than the widely used Kriging method. Besides, it could clearly show the effect of those affecting factors in different spatial locations on the crop water requirement and provide more detailed information on the region where those factors suddenly change. To sum up, it is of great reference significance for the estimation of the regional crop water requirement.
文摘为探索适用于海南岛日最低、最高气温空间插值的方法,研究以经度、纬度、海拔、坡度、坡向、海陆距离、NDVI等为环境变量,采用多元线性回归(multiple linear regression,MLR)、地理加权回归(geographically weighted regression,GWRK)、多元线性回归克里格(multiple linear regression-Kiging,MLRK)和地理加权回归克里格(geographically weighted regression-Kriging,GWRK)等4种方法对海南岛2016年1月1日—6月30日的日最低、最高气温进行了插值。结果表明:4种方法对日最低气温插值的总的平均绝对误差:MLR>GWR>GWRK>MLRK,但GWR、GWRK、MLRK对日最低气温插值的总的平均绝对误差十分接近,对日最高气温有相同的规律。MLRK对日最低、最高气温的总体平均绝对误差分别为0.50℃和0.73℃。GWRK、MLRK对逐日最低气温插值的平均绝对误差也十分接近,对日最高气温也有相同的规律。无论是对日最低气温还是对日最高气温,MLRK、GWRK插值空间分布的主要差异均在站点稀疏的山区。因此,在海南岛,宜采用多元回归克里格(MLRK)对日最低、最高气温进行空间插值。