On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological...On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological objects are divided into four object classes: point, line, area and volume. The volume class is further divided into four subclasses: the composite volume, the complex volume, the simple volume and the component. Twelve kinds of topological relations and the related data structures are designed for the geological objects.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating ...This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating fluids saturation logs during the history matching phase unlocks the possibility to adjust or select models that better represent the near wellbore waterfront movement, which is particularly important for uncertainty mitigation during future well interference assessments in water driven reservoirs. For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to evaluate the proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir from Namorado field in Brazil. To effectively compare the proposed methodology against the conventional methods, a commercial reservoir simulator was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTMapproach. A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correlation coefficient(MCC) has been proved to offer the best results when using binary data from water saturation logs. History matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir models,especially for cases with high heterogeneity. The methodology also offers additional information and understanding of sweep behaviour behind the well casing at specific production zones, thus revealing full model potential to define new wells and reservoir development opportunities.展开更多
To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not...To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results.展开更多
3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geologica...3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geological reports, the spatial expression form for the coal seams and their surrounding rocks are 2D maps. These 2D maps are excellent data sources for constructing 3D geological models of coal field exploration areas. How to construct 3D models from these 2D maps has been studying in coal exploration industry for a long time, and still no breakthrough has been achieved so far. This paper discusses the principle, method and software design idea of constructing 3D geological model of an exploration area with 2D maps made by AutoCAD/MapGIS. At first, the paper analyzes 3D geological surface expression mode in 3D geological modeling software. It is pointed out that although contour method has unique advantages in coal field exploration, TIN (Triangular Irregular Network) is still the standard configuration of 3D modeling software for coal field. Then, the paper discusses the method of 2D line features obtaining elevation and upgrading 2D curve to 3D curve. Next, the method of semi-automatic partition is introduced to build the boundary ring of the surface patch, that is, the user clicks and selects the line feature to build the outer boundary ring of the surface patch. Then, Auto-process method for fault line inside of the outer boundary ring is discussed, it including construction of fault ring, determining fault ring being normal fault ring or reverse fault ring and an algorithm of dealing with normal fault ring. An algorithm of dealing with reverse fault ring is discussed detailly, the method of expanding reverse fault ring and dividing the duplicate area in reverse fault into two portions is introduced. The paper also discusses the method of extraction ridge line/valley line, the construction of fault plane, the construction of stratum and coal body. The above ideas and methods have been initially implemented in the “3D modeling platform for coal field exploration” software, and applied to the 3D modeling practice of data from several coal field exploration areas in Ningxia, Shanxi, Qinghai, etc.展开更多
Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine suc...Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.展开更多
This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation ...This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation models and mechanisms of the whole petroleum system.It delineates the geological model,flow model,and production mechanism of shale and tight reservoirs,and proposes future research orientations.The main structure of the whole petroleum system includes three fluid dynamic fields,three types of oil and gas reservoirs/resources,and two types of reservoir-forming processes.Conventional oil/gas,tight oil/gas,and shale oil/gas are orderly in generation time and spatial distribution,and sequentially rational in genetic mechanism,showing the pattern of sequential accumulation.The whole petroleum system involves two categories of hydrocarbon accumulation models:hydrocarbon accumulation in the detrital basin and hydrocarbon accumulation in the carbonate basin/formation.The accumulation of unconventional oil/gas is self-containment,which is microscopically driven by the intermolecular force(van der Waals force).The unconventional oil/gas production has proved that the geological model,flow model,and production mechanism of shale and tight reservoirs represent a new and complex field that needs further study.Shale oil/gas must be the most important resource replacement for oil and gas resources of China.Future research efforts include:(1)the characteristics of the whole petroleum system in carbonate basins and the source-reservoir coupling patterns in the evolution of composite basins;(2)flow mechanisms in migration,accumulation,and production of shale oil/gas and tight oil/gas;(3)geological characteristics and enrichment of deep and ultra-deep shale oil/gas,tight oil/gas and coalbed methane;(4)resource evaluation and new generation of basin simulation technology of the whole petroleum system;(5)research on earth system-earth organic rock and fossil fuel system-whole petroleum system.展开更多
In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“d...In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“dual carbon”goals and the transition of energy structure.The Jiyang Depression in the Bohai Bay Basin has vast potential for deep,high-temperature geothermal resources.By analyzing data from 2187 wells with temperature logs and 270 locations for temperature measurement in deep strata,we mapped the geothermal field of shallow to medium-deep layers in the Jiyang Depression using ArcGIS and predicted the temperatures of deep layers with a burial depth of 4000 m.Through stochastic modeling and numerical simulation,a reservoir attribute parameter database for favorable deep,high-temperature geothermal areas was developed,systematically characterizing the spatial distribution of geothermal resources within a play fairway of 139.5 km2 and estimating the exploitable deep geothermal resource potential by using the heat storage method and Monte Carlo data analysis.The study reveals that the Fan 54 well block in the Boxing-Jijia region is of prime significance to develop deep,high-temperature geothermal resources in the Jiyang Depression.Strata from the Cenozoic to the Upper Paleozoic are identified as effective cap layers for these deep geothermal resources.The Lower Paleozoic capable of effectively storing thermal energy and possessing an exploitable resource volume up to 127 million tons of standard coal,is identified as a target system for the development of deep high-temperature geothermal resources,providing significant insights for the efficient development of geothermal resources in the Jiyang Depression.展开更多
Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D ...Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-re...Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.展开更多
The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallo...The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallogeny of the deposit have included its timing,the ore-controlling structures and sedimentary host rocks and their implications for mineral exploration.However,the deep nappe structural style of Taqian-Fuchun metallogenic belt that hosts the W deposit,and the spatial shape and scale of deeply concealed intrusions and their sedimentary host rocks are still poorly defined,which seriously restricts the discovery of new deposits at depth and in surrounding areas of the W deposit.Modern 3 D geological modeling is an important tool for the exploration of concealed orebodies,especially in brownfield environments.There are obvious density contrast and weak magnetic contrast in the ore-controlling strata and granite at the periphery of the deposit,which lays a physical foundation for solving the 3 D spatial problems of the ore-controlling geological body in the deep part of the study area through gravity and magnetic modeling.Gravity data(1:50000)and aeromagnetic data(1:50000)from the latest geophysical surveys of 2016-2018 have been used,firstly,to carry out a potential field separation to obtain residual anomalies for gravity and magnetic interactive inversion.Then,on the basis of the analysis of the relationship between physical properties and lithology,under the constraints of surface geology and borehole data,human-computer interactive gravity and magnetic inversion for 18 cross-sections were completed.Finally,the 3 D geological model of the Zhuxi tungsten deposit and its periphery have been established through these 18 sections,and the spatial shape of the intrusions and strata with a depth of 5 km underground were obtained,initially realizing―transparency‖for ore-controlling bodies.According the analysis of the geophysical,geochemical,and geological characteristics of the Zhuxi tungsten deposit,we discern three principles for prospecting and prediction in the research area,and propose five new exploration targets in its periphery.展开更多
Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error...Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of uncertainty in 3D geological structure models are proposed.We have described in detail the integration of development practices of 3D geological modeling systems,as well as the implementation process for uncertainty evaluation in 3D geological structure models.This study has laid the basis to build theoretical and methodological systems for accuracy assessment and error correction in 3D geological models and can assist in improving 3D modeling techniques under complex geological conditions.展开更多
3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geo...3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.展开更多
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana...Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.展开更多
To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves...To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir.展开更多
Reliable 3D modelling of underground hydrocarbon reservoirs is a challenging task due to the complexity of the underground geological formations and to the availability of different types of data that are typically af...Reliable 3D modelling of underground hydrocarbon reservoirs is a challenging task due to the complexity of the underground geological formations and to the availability of different types of data that are typically affected by uncertainties. In the case of geologically complex depositional environments, such as fractured hydrocarbon reservoirs, the uncertainties involved in the modelling process demand accurate analysis and quantification in order to provide a reliable confidence range of volumetric estimations. In the present work, we used a 3D model of a fractured carbonate reservoir and populated it with different lithological and petrophysical properties. The available dataset also included a discrete fracture network(DFN) property that was used to model the fracture distribution. Uncertainties affecting lithological facies, their geometry and absolute positions(related to the fault system), fracture distribution and petrophysical properties were accounted for. We included all different types of uncertainties in an automated approach using tools available in today’s modelling software packages and combining all the uncertain input parameters in a series of statistically representative geological realizations. In particular, we defined a specific workflow for the definition of the absolute permeability according to an equivalent, single porosity approach, taking into account the contribution of both the matrix and the fracture system. The results of the analyses were transferred into a 3D numerical fluid-dynamic simulator to evaluate the propagation of the uncertainties associated to the input data down to the final results, and to assess the dynamic response of the reservoir following a selected development plan. The "integrated approach" presented in this paper can be useful for all technicians involved in the construction and validation of 3D numerical models of hydrocarbon-bearing reservoirs and can potentially become part of the educational training for young geoscientists and engineers, since an integrated and well-constructed workflow is the backbone of any reservoir study.展开更多
Based on characteristic of the associated mining of multi-coal seam and the engineering geological characteristics of overburden,the mining impact pattern of multi- seam mining and the dynamic fracture mechanism of ov...Based on characteristic of the associated mining of multi-coal seam and the engineering geological characteristics of overburden,the mining impact pattern of multi- seam mining and the dynamic fracture mechanism of overburden were characterized by applying the engineering geological mechanical model test.The related strata movement parameters and influence area of multi-seam mining were obtained,the strike boundary angle is 61°,the full extraction coefficient is 0.93,the greatest subsidence angle is 81°,the horizontal movement factor is 0.38,the deviation of inflection point/mining deep is 0.11. The development height of caving zone and water flowing fractured zone of multi-seam mining were calculated,is 32 m and 81.5 m separatly.The assess of influence degree of coal layer safety mining is that,there exists the possibility of water and sand inflow when mining,some messures for mine water prevention and control should be used,and the mining thickness should be local strictly limit.展开更多
A new geological model of Member 3 of Shahejie Formation reservoir in the Liuzan Oilfield, eastern Hebei Province was constructed by using modem reservoir modeling technology as sequence stratigraphy and conditional s...A new geological model of Member 3 of Shahejie Formation reservoir in the Liuzan Oilfield, eastern Hebei Province was constructed by using modem reservoir modeling technology as sequence stratigraphy and conditional simulation combined with traditional geological analysis. The model consists of a stratigraphic framework model, a structural model, a sedimentary model and a reservoir model. The study shows that the reservoir is a relatively integrated nose structure, whose strata can be divided into 4 sets of parasequence, 12 parasequences. The submerged branched channel of fan delta front is the favorable microfacies, which controls the geometric shape and physical properties of reservoir sandstone. Oil is distributed in premium reservoir sandstones at structural high positions. According to the new geological model, not only the geological contradictions appearing during oil field development are resolved, but also the oil-bearing area is enlarged by 2.7km^2 and geological reserves increased by 156.9 million tons. The production capacity of the Liuzan Oilfield is increased by 0.27 million tons per year.展开更多
文摘On the study of the basic characteristics of geological objects and the special requirement for computing 3D geological model, this paper gives an object-oriented 3D topologic data model. In this model, the geological objects are divided into four object classes: point, line, area and volume. The volume class is further divided into four subclasses: the composite volume, the complex volume, the simple volume and the component. Twelve kinds of topological relations and the related data structures are designed for the geological objects.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
文摘This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating fluids saturation logs during the history matching phase unlocks the possibility to adjust or select models that better represent the near wellbore waterfront movement, which is particularly important for uncertainty mitigation during future well interference assessments in water driven reservoirs. For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to evaluate the proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir from Namorado field in Brazil. To effectively compare the proposed methodology against the conventional methods, a commercial reservoir simulator was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTMapproach. A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correlation coefficient(MCC) has been proved to offer the best results when using binary data from water saturation logs. History matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir models,especially for cases with high heterogeneity. The methodology also offers additional information and understanding of sweep behaviour behind the well casing at specific production zones, thus revealing full model potential to define new wells and reservoir development opportunities.
基金Supported by the China National Oil and Gas Major Project(2016ZX05010-003)PetroChina Science and Technology Major Project(2019B1210,2021DJ1201).
文摘To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results.
文摘3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geological reports, the spatial expression form for the coal seams and their surrounding rocks are 2D maps. These 2D maps are excellent data sources for constructing 3D geological models of coal field exploration areas. How to construct 3D models from these 2D maps has been studying in coal exploration industry for a long time, and still no breakthrough has been achieved so far. This paper discusses the principle, method and software design idea of constructing 3D geological model of an exploration area with 2D maps made by AutoCAD/MapGIS. At first, the paper analyzes 3D geological surface expression mode in 3D geological modeling software. It is pointed out that although contour method has unique advantages in coal field exploration, TIN (Triangular Irregular Network) is still the standard configuration of 3D modeling software for coal field. Then, the paper discusses the method of 2D line features obtaining elevation and upgrading 2D curve to 3D curve. Next, the method of semi-automatic partition is introduced to build the boundary ring of the surface patch, that is, the user clicks and selects the line feature to build the outer boundary ring of the surface patch. Then, Auto-process method for fault line inside of the outer boundary ring is discussed, it including construction of fault ring, determining fault ring being normal fault ring or reverse fault ring and an algorithm of dealing with normal fault ring. An algorithm of dealing with reverse fault ring is discussed detailly, the method of expanding reverse fault ring and dividing the duplicate area in reverse fault into two portions is introduced. The paper also discusses the method of extraction ridge line/valley line, the construction of fault plane, the construction of stratum and coal body. The above ideas and methods have been initially implemented in the “3D modeling platform for coal field exploration” software, and applied to the 3D modeling practice of data from several coal field exploration areas in Ningxia, Shanxi, Qinghai, etc.
文摘Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.
基金Supported by the National Natural Science Foundation of China(U22B6002)PetroChina Science Research and Technology Development Project(2021DJ0101)。
文摘This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation models and mechanisms of the whole petroleum system.It delineates the geological model,flow model,and production mechanism of shale and tight reservoirs,and proposes future research orientations.The main structure of the whole petroleum system includes three fluid dynamic fields,three types of oil and gas reservoirs/resources,and two types of reservoir-forming processes.Conventional oil/gas,tight oil/gas,and shale oil/gas are orderly in generation time and spatial distribution,and sequentially rational in genetic mechanism,showing the pattern of sequential accumulation.The whole petroleum system involves two categories of hydrocarbon accumulation models:hydrocarbon accumulation in the detrital basin and hydrocarbon accumulation in the carbonate basin/formation.The accumulation of unconventional oil/gas is self-containment,which is microscopically driven by the intermolecular force(van der Waals force).The unconventional oil/gas production has proved that the geological model,flow model,and production mechanism of shale and tight reservoirs represent a new and complex field that needs further study.Shale oil/gas must be the most important resource replacement for oil and gas resources of China.Future research efforts include:(1)the characteristics of the whole petroleum system in carbonate basins and the source-reservoir coupling patterns in the evolution of composite basins;(2)flow mechanisms in migration,accumulation,and production of shale oil/gas and tight oil/gas;(3)geological characteristics and enrichment of deep and ultra-deep shale oil/gas,tight oil/gas and coalbed methane;(4)resource evaluation and new generation of basin simulation technology of the whole petroleum system;(5)research on earth system-earth organic rock and fossil fuel system-whole petroleum system.
基金Research Project(SNKJ2022A06-R23)the Innovation Fund Project for Graduate Student of China University of Petroleum(East China)the Fundamental Research Funds for the Central Uni-versities(No.24CX04021A)。
文摘In China,geothermal resource utilization has mainly focused on resources at shallow and medium depths.Yet,the exploration of deep,high-temperature geothermal resources holds significant importance for achieving the“dual carbon”goals and the transition of energy structure.The Jiyang Depression in the Bohai Bay Basin has vast potential for deep,high-temperature geothermal resources.By analyzing data from 2187 wells with temperature logs and 270 locations for temperature measurement in deep strata,we mapped the geothermal field of shallow to medium-deep layers in the Jiyang Depression using ArcGIS and predicted the temperatures of deep layers with a burial depth of 4000 m.Through stochastic modeling and numerical simulation,a reservoir attribute parameter database for favorable deep,high-temperature geothermal areas was developed,systematically characterizing the spatial distribution of geothermal resources within a play fairway of 139.5 km2 and estimating the exploitable deep geothermal resource potential by using the heat storage method and Monte Carlo data analysis.The study reveals that the Fan 54 well block in the Boxing-Jijia region is of prime significance to develop deep,high-temperature geothermal resources in the Jiyang Depression.Strata from the Cenozoic to the Upper Paleozoic are identified as effective cap layers for these deep geothermal resources.The Lower Paleozoic capable of effectively storing thermal energy and possessing an exploitable resource volume up to 127 million tons of standard coal,is identified as a target system for the development of deep high-temperature geothermal resources,providing significant insights for the efficient development of geothermal resources in the Jiyang Depression.
基金supported by the National Basic Research Program of China(Grant No.1212010881001 )the National Scicnce of the 12th "Five-Year Technology Support Program"(Grant No.2010BAE00281-6)+1 种基金the National Natural Science Foundation of China(Grant Nos.40772157,40972232, 41072070)the State Key Laboratory of Geological Processes and Mineral Resources(Grant Nos.GPMR0941,200624)
文摘Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
基金granted by the National Basic Research Program of China(grant no.2014CB239205)National Science and Technology Major Project of China (grant no.20011ZX05030-005-003)
文摘Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.
基金jointly supported by the National Key R&D Program of China(Grant No.2016YFC0600201)China Geological Survey project(Grant Nos.DD20190012,DD20160082)the National Natural Science Foundation of China(Grant Nos.92062108,41630320,41574133)。
文摘The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallogeny of the deposit have included its timing,the ore-controlling structures and sedimentary host rocks and their implications for mineral exploration.However,the deep nappe structural style of Taqian-Fuchun metallogenic belt that hosts the W deposit,and the spatial shape and scale of deeply concealed intrusions and their sedimentary host rocks are still poorly defined,which seriously restricts the discovery of new deposits at depth and in surrounding areas of the W deposit.Modern 3 D geological modeling is an important tool for the exploration of concealed orebodies,especially in brownfield environments.There are obvious density contrast and weak magnetic contrast in the ore-controlling strata and granite at the periphery of the deposit,which lays a physical foundation for solving the 3 D spatial problems of the ore-controlling geological body in the deep part of the study area through gravity and magnetic modeling.Gravity data(1:50000)and aeromagnetic data(1:50000)from the latest geophysical surveys of 2016-2018 have been used,firstly,to carry out a potential field separation to obtain residual anomalies for gravity and magnetic interactive inversion.Then,on the basis of the analysis of the relationship between physical properties and lithology,under the constraints of surface geology and borehole data,human-computer interactive gravity and magnetic inversion for 18 cross-sections were completed.Finally,the 3 D geological model of the Zhuxi tungsten deposit and its periphery have been established through these 18 sections,and the spatial shape of the intrusions and strata with a depth of 5 km underground were obtained,initially realizing―transparency‖for ore-controlling bodies.According the analysis of the geophysical,geochemical,and geological characteristics of the Zhuxi tungsten deposit,we discern three principles for prospecting and prediction in the research area,and propose five new exploration targets in its periphery.
基金provided by the Talent Training Project of the National Natural Science Foundation of China (No.J0730534)the National Natural Science Foundation of China (No.40902093)+1 种基金the Morning Light Plan of the Shanghai Educational Development Foundation (No.2007CG34)the Open Foundation of the Shanghai Key Laboratory of Urbanization and Ecological Restoration (No.200803)
文摘Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of uncertainty in 3D geological structure models are proposed.We have described in detail the integration of development practices of 3D geological modeling systems,as well as the implementation process for uncertainty evaluation in 3D geological structure models.This study has laid the basis to build theoretical and methodological systems for accuracy assessment and error correction in 3D geological models and can assist in improving 3D modeling techniques under complex geological conditions.
基金Project 2001AA135170 supported by the National High-Tech Research and Development (863) Program of China and 06ZR14031 by the Natural ScienceFoundation of Shanghai Municipality
文摘3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51009106)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0404)the National Basic Research Program of China("973"Program,No.2013CB035903)
文摘Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-002,2017ZX05005)Chinese Academy of Sciences Pilot A Special Project(XDA14010205)。
文摘To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir.
文摘Reliable 3D modelling of underground hydrocarbon reservoirs is a challenging task due to the complexity of the underground geological formations and to the availability of different types of data that are typically affected by uncertainties. In the case of geologically complex depositional environments, such as fractured hydrocarbon reservoirs, the uncertainties involved in the modelling process demand accurate analysis and quantification in order to provide a reliable confidence range of volumetric estimations. In the present work, we used a 3D model of a fractured carbonate reservoir and populated it with different lithological and petrophysical properties. The available dataset also included a discrete fracture network(DFN) property that was used to model the fracture distribution. Uncertainties affecting lithological facies, their geometry and absolute positions(related to the fault system), fracture distribution and petrophysical properties were accounted for. We included all different types of uncertainties in an automated approach using tools available in today’s modelling software packages and combining all the uncertain input parameters in a series of statistically representative geological realizations. In particular, we defined a specific workflow for the definition of the absolute permeability according to an equivalent, single porosity approach, taking into account the contribution of both the matrix and the fracture system. The results of the analyses were transferred into a 3D numerical fluid-dynamic simulator to evaluate the propagation of the uncertainties associated to the input data down to the final results, and to assess the dynamic response of the reservoir following a selected development plan. The "integrated approach" presented in this paper can be useful for all technicians involved in the construction and validation of 3D numerical models of hydrocarbon-bearing reservoirs and can potentially become part of the educational training for young geoscientists and engineers, since an integrated and well-constructed workflow is the backbone of any reservoir study.
基金the National Natural Science Foundation of China(40372123)
文摘Based on characteristic of the associated mining of multi-coal seam and the engineering geological characteristics of overburden,the mining impact pattern of multi- seam mining and the dynamic fracture mechanism of overburden were characterized by applying the engineering geological mechanical model test.The related strata movement parameters and influence area of multi-seam mining were obtained,the strike boundary angle is 61°,the full extraction coefficient is 0.93,the greatest subsidence angle is 81°,the horizontal movement factor is 0.38,the deviation of inflection point/mining deep is 0.11. The development height of caving zone and water flowing fractured zone of multi-seam mining were calculated,is 32 m and 81.5 m separatly.The assess of influence degree of coal layer safety mining is that,there exists the possibility of water and sand inflow when mining,some messures for mine water prevention and control should be used,and the mining thickness should be local strictly limit.
文摘A new geological model of Member 3 of Shahejie Formation reservoir in the Liuzan Oilfield, eastern Hebei Province was constructed by using modem reservoir modeling technology as sequence stratigraphy and conditional simulation combined with traditional geological analysis. The model consists of a stratigraphic framework model, a structural model, a sedimentary model and a reservoir model. The study shows that the reservoir is a relatively integrated nose structure, whose strata can be divided into 4 sets of parasequence, 12 parasequences. The submerged branched channel of fan delta front is the favorable microfacies, which controls the geometric shape and physical properties of reservoir sandstone. Oil is distributed in premium reservoir sandstones at structural high positions. According to the new geological model, not only the geological contradictions appearing during oil field development are resolved, but also the oil-bearing area is enlarged by 2.7km^2 and geological reserves increased by 156.9 million tons. The production capacity of the Liuzan Oilfield is increased by 0.27 million tons per year.