期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Delineating homogeneous domains of fractured rocks using topological manifolds and deep learning
1
作者 Yongqiang Liu Jianping Chen +3 位作者 Fujun Zhou Jiewei Zhan Wanglai Xu Jianhua Yan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2996-3013,共18页
Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural informa... Determining homogeneous domains statistically is helpful for engineering geological modeling and rock mass stability evaluation.In this text,a technique that can integrate lithology,geotechnical and structural information is proposed to delineate homogeneous domains.This technique is then applied to a high and steep slope along a road.First,geological and geotechnical domains were described based on lithology,faults,and shear zones.Next,topological manifolds were used to eliminate the incompatibility between orientations and other parameters(i.e.trace length and roughness)so that the data concerning various properties of each discontinuity can be matched and characterized in the same Euclidean space.Thus,the influence of implicit combined effect in between parameter sequences on the homogeneous domains could be considered.Deep learning technique was employed to quantify abstract features of the characterization images of discontinuity properties,and to assess the similarity of rock mass structures.The results show that the technique can effectively distinguish structural variations and outperform conventional methods.It can handle multisource engineering geological information and multiple discontinuity parameters.This technique can also minimize the interference of human factors and delineate homogeneous domains based on orientations or multi-parameter with arbitrary distributions to satisfy different engineering requirements. 展开更多
关键词 Homogeneous domain Geological domain Geotechnical domain Structural domain Topological manifold Deep learning
下载PDF
Joint simulation of cross-correlated ore grades and geological domains:an application to mineral resource modeling
2
作者 Nasser MADANI Mohammad MALEKI 《Frontiers of Earth Science》 SCIE CSCD 2023年第2期417-436,共20页
Spatial modeling of ore grades is frequently impacted by the local variation in geological domains such as lithological characteristics,rock types,and geological formations.Disregarding this information may lead to bi... Spatial modeling of ore grades is frequently impacted by the local variation in geological domains such as lithological characteristics,rock types,and geological formations.Disregarding this information may lead to biased results in the final ore grade block model,subsequently impacting the downstream processes in a mining chain project.In the current practice of ore body evaluation,which is known as stochastic cascade/hierarchical geostatistical modeling,the geological domain is first characterized,and then,within the geological model,the ore grades of interest are evaluated.This practice may be unrealistic in the case when the variability in ore grade across the boundary is gradual,following a smooth transition.To reproduce such characteristics,the cross dependence that exists between the ore grade and geological formations is considered in the conventional joint simulation between continuous and categorical variables.However,when using this approach,only one ore variable is considered,and its relationship with other ore grades that may be available at the sample location is ignored.In this study,an alternative approach to jointly model two cross-correlated ore grades and one categorical variable(i.e.,geological domains)with soft contact relationships that exist among the geological domains is proposed.The statistical and geostatistical tools are provided for variogram inference,Gibbs sampling,and conditional cosimulation.The algorithm is also tested by applying it to a Cu deposit,where the geological formations are managed by the local and spatial distribution of two cross-correlated ore grades,Cu and Au,throughout the deposit.The results show that the proposed algorithm outperforms other geostatistical techniques in terms of global and local reproduction of statistical parameters. 展开更多
关键词 geostatistical simulation categorical variable continuous variable geological domain variogram inference
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部