Twenty-seven FHDZ-M15 combined geomagnetic observation systems(each of which is equipped with a fluxgate magnetometer and a proton magnetometer)had been installed in the China geomagnetic network before the 2008 Wench...Twenty-seven FHDZ-M15 combined geomagnetic observation systems(each of which is equipped with a fluxgate magnetometer and a proton magnetometer)had been installed in the China geomagnetic network before the 2008 Wenchuan earthquake,during which coseismic disturbances were recorded by 26 fluxgate magnetometer observatories.The geomagnetic disturbances have similar spatial and temporal patterns to seismic waves,except for various delays.Six proton magnetometer observatories recorded coseismic disturbances with very small amplitudes.In addition,fluxgate magnetometers registered largeamplitude disturbances that are likely to have included responses to seismic waves.However,two problems remain unresolved.First,why do these geomagnetic disturbances always arrive later than P waves?Second,why do the geomagnetic disturbances have spatial and temporal directivity similar to the main rupture direction of the earthquake?Solving these two problems may be crucial to find the mechanism responsible for generating these geomagnetic anomalies.展开更多
The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of...The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of various sizes,for the recorded magnetic components at different latitudes and latitudes.The observatories we included in our study are USA(Surlari),HON(Honolulu),SBA(Scott Base),KAK(Kakioka),THY(Tihany),UPS(Uppsala),WNG(Wingst)and Yellowknife(YKC).We used the data of these observatories from International Real-time Magnetic Observatory Network(INTERMAGNET)for the geomagnetic storm from October 28-31,2003.We have used for this purpose a series of filtering algorithms,spectral analysis and wavelet with different mother functions at different levels.In the paper,we show the Fourier and wavelet analysis of geomagnetic data recorded at different observatories regarding geomagnetic storms.Fourier analysis hightlights predominant frequencies of magnetic field components.Wavelet analysis provides information about the frequency ranges of magnetic fields,which contain long time intervals for medium frequency information and short time intervals for highlight frequencies,details of the analyzed signals.Also,the wavelet analysis allows us to decompose geomagnetic signals in different waves.The analyses presented are significant for the studies of the geomagnetic storm.The data for the next days after the storm showed a mitigation of the perturbations and a transition to quiet days of the geomagnetic field.展开更多
In-situ solar wind measurement at a solar longitude separated from the earth in interplanetary space is expected to provide a great progress in practical space weather forecast, which has been confirmed by some recent...In-situ solar wind measurement at a solar longitude separated from the earth in interplanetary space is expected to provide a great progress in practical space weather forecast, which has been confirmed by some recent studies. We introduce geoeffective solar wind conditions in correlation analysis between STEREO and ACE measurements. We sort solar wind data of ACE by using geomagnetic condition, and evaluate actual ability for predicting geoeffective solar wind arrival at ACE from STEREO-A and B solar wind measurement, by assuming simple corotating structures in interplanetary space. The results show that geomagnetic disturbances are more difficult to be predicted than quiet intervals, suggesting that the simple correlation method of solar wind measurement at separated solar longitude is not enough for accurately predicting geomagnetic disturbances, even though the correlation seems generally high. Although in-situ solar wind monitoring at a vantage point trailing behind the earth would definitely improve the prediction capability of solar wind structure arriving at the terrestrial plasma environment, we emphasize that the predictive ability of geoeffective disturbances would still remain low. We suggest that more sophisticated prediction schemes should be developed.展开更多
In the present paper dependence of geomagnetic activity on the solar-wind plasma and interplanetary magnetic field (IMF) parameters has been studied. We have taken interplanetary solar wind data at the instant of Dst ...In the present paper dependence of geomagnetic activity on the solar-wind plasma and interplanetary magnetic field (IMF) parameters has been studied. We have taken interplanetary solar wind data at the instant of Dst minimum. Our study consists of 200 geomagnetic storms weighed by disturbance storm time (Dst) -50 nT, observed during solar cycle 23. The study suggests that the strength of the geomagnetic storm is strongly dependent on the total magnetic field Btotal. The correlation (-0.72) has been found reasonable. In perspective of previous studies, the strength of the geomagnetic storm is strongly dependent on the southward component (Bz) whereas in present study exposes that the correlation (0.22) is weak. This result indicates that solar wind southward magnetic field component Bz has significant growth particularly before the main phase of geomagnetic storm (not during the main phase). The present result implies that neither density nor temperature is significantly related to the variation of geomagnetic disturbance;rather the effects of the pressure and speed. However, a low plasma beta during highly geoeffective event seems to be an important criterion.展开更多
This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionos...This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere.展开更多
In this paper the characteristics of Sq variation of geomagnetic field in the region of the Chinese Great Wall Station (CGWS), Antarctica, in winter are analyzed from geomagnetic data obtained at the Geomagnetic Obser...In this paper the characteristics of Sq variation of geomagnetic field in the region of the Chinese Great Wall Station (CGWS), Antarctica, in winter are analyzed from geomagnetic data obtained at the Geomagnetic Observatory of CGWS. The result enables us to reveal the following aspects: (1) The pattern of Sq variation at CGWS in early (Apr.) and Late winter (Sep.) is similar to that at Beijing Geomagnetic Observatory (BJO) at the middle latitude in the Northern Hemisphere. It may be controlled by the midlatitudinal ionospheric dynamo current. Amplitude of Sq variation is very small, and the harmonics in 8 hours or shorter periods in midwinter (June and July) is predominant because of the decreased effect of solar ultraviolet radiation and the dominant geomagnetic disturbance at high latitudes. (2) The vectors of Sq-equivalent current in the daytime are about five times more than that in the night. The direction of the vectors is clockwise in the daytime (08-15h) and counterclockwise in the night in early and late winter. Both of the vectors are very small because of the effect of the current density in the ionosphere is relatively weak in midwinter. The direction of vectors of Sq-equivalent current at CGWS in early and late winter is different from that in midwinter. It may be affected by the ionospheric current and field-aligned current in the polar region.展开更多
Aim of this paper is to reveal whether the geomagnetic activity (GMA) and meteorological factors (MFs) affect vascular parameters of healthy volunteers. As a trial study we used new device “Tonocard,” and new vascul...Aim of this paper is to reveal whether the geomagnetic activity (GMA) and meteorological factors (MFs) affect vascular parameters of healthy volunteers. As a trial study we used new device “Tonocard,” and new vascular parameters for study—a pulse wave velocity (PWV) and an endothelial function (EnF) in addition to blood pressure measurements. These parameters never investigated before in such aspects. As far as novelty of device itself and investigated parameters we limited ourselves by monitoring only four healthy volunteers (without cardiovascular pathology). To analyze the sensitivity of their aforementioned medical indices to GMA and MFs two independent mathematical approaches were used, one of whom is based on traditional methods of mathematical statistics and the other on the theory of pattern recognition Dependence of physiological characteristics on the atmospheric temperature, revealed by both applied mathematical approaches, showed complex non-linear character of biological replies: the reaction has a different form in different temperature ranges and is manifested in the form of synchronization of slow variations of physiological and atmospheric parameters (trends) with a period of several days, while the daily variations were virtually independent. The systolic blood pressure (SBP), PWV and a difference between two specially selected values of PWV (DPWV) are approximately equally depending on atmospheric temperature, which accounts for an average of 26% to 28% of their variations. Sensitivity to the GMA for this test was found only for PWV.展开更多
Based on the existing geomagnetic diurnal variation theory and correction method,this paper makes a comprehensive analysis of the international geomagnetic quiet diurnal variation by Fourier Transform and one-dimensio...Based on the existing geomagnetic diurnal variation theory and correction method,this paper makes a comprehensive analysis of the international geomagnetic quiet diurnal variation by Fourier Transform and one-dimensional Continuous Wavelet Transform.The frequency band greater than 0.2 Hz is the embodiment of the geomagnetic disturbance field in the frequency domain.Discrete Wavelet Transform is used to separate the variation,thus improving accuracy of the existing geomagnetic diurnal variation correction method.According to the characteristics of variation and Discrete Wavelet Decomposition,Sym8 wavelet is selected as the basic wavelet to decompose the data at 7 layers.The long-term and short-term variation of geomagnetic diurnal variation are effectively separated from the geomagnetic disturbance part under the condition of ensuring the fidelity.Compared with the results of Fourier Series decomposition and low-pass filter,the processing effect of Discrete Wavelet Transform is better.The effective separation and correction of short-term,long-term variation and geomagnetic disturbances can improve the quality of diurnal variation correction in marine geomagnetic measurement,reduce the error accumulation in the process of marine geomagnetic data processing,and improve the scientificity and accuracy of the current diurnal variation correction methods.展开更多
This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interp...This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.展开更多
1研究背景。Hayakawa在1996年提出的地磁垂直强度极化方法在我国广泛应用。该方法通过数值模拟获知一次源来自高空电离层的极化值小于1,源自于震源的极化值大于或约等于1(Hayakawa et al,1996),Hayakawa利用该方法对1993年的关岛8级地...1研究背景。Hayakawa在1996年提出的地磁垂直强度极化方法在我国广泛应用。该方法通过数值模拟获知一次源来自高空电离层的极化值小于1,源自于震源的极化值大于或约等于1(Hayakawa et al,1996),Hayakawa利用该方法对1993年的关岛8级地震进行研究,发现震前垂直强度极化Yz h值逐渐增大直到发震时达最大值,震后恢复。近年我国学者研究发现地震往往发生在台站出现极化值高值异常后的1个月时间内(冯志生等,2010),发震地点在异常空间等值线的阈值线附近(冯丽丽等,2021),这种极化值异常与外空场活动无关(何畅等,2017)。展开更多
基金The National Key R&D Program of China(2017YFC1500502)provides the funding
文摘Twenty-seven FHDZ-M15 combined geomagnetic observation systems(each of which is equipped with a fluxgate magnetometer and a proton magnetometer)had been installed in the China geomagnetic network before the 2008 Wenchuan earthquake,during which coseismic disturbances were recorded by 26 fluxgate magnetometer observatories.The geomagnetic disturbances have similar spatial and temporal patterns to seismic waves,except for various delays.Six proton magnetometer observatories recorded coseismic disturbances with very small amplitudes.In addition,fluxgate magnetometers registered largeamplitude disturbances that are likely to have included responses to seismic waves.However,two problems remain unresolved.First,why do these geomagnetic disturbances always arrive later than P waves?Second,why do the geomagnetic disturbances have spatial and temporal directivity similar to the main rupture direction of the earthquake?Solving these two problems may be crucial to find the mechanism responsible for generating these geomagnetic anomalies.
文摘The purpose of this study was to analyze the associated spectrum of geomagnetic field,frequencies intensity and the time of occurrence.We calculated the variation of the correlation coefficients,with mobile windows of various sizes,for the recorded magnetic components at different latitudes and latitudes.The observatories we included in our study are USA(Surlari),HON(Honolulu),SBA(Scott Base),KAK(Kakioka),THY(Tihany),UPS(Uppsala),WNG(Wingst)and Yellowknife(YKC).We used the data of these observatories from International Real-time Magnetic Observatory Network(INTERMAGNET)for the geomagnetic storm from October 28-31,2003.We have used for this purpose a series of filtering algorithms,spectral analysis and wavelet with different mother functions at different levels.In the paper,we show the Fourier and wavelet analysis of geomagnetic data recorded at different observatories regarding geomagnetic storms.Fourier analysis hightlights predominant frequencies of magnetic field components.Wavelet analysis provides information about the frequency ranges of magnetic fields,which contain long time intervals for medium frequency information and short time intervals for highlight frequencies,details of the analyzed signals.Also,the wavelet analysis allows us to decompose geomagnetic signals in different waves.The analyses presented are significant for the studies of the geomagnetic storm.The data for the next days after the storm showed a mitigation of the perturbations and a transition to quiet days of the geomagnetic field.
文摘In-situ solar wind measurement at a solar longitude separated from the earth in interplanetary space is expected to provide a great progress in practical space weather forecast, which has been confirmed by some recent studies. We introduce geoeffective solar wind conditions in correlation analysis between STEREO and ACE measurements. We sort solar wind data of ACE by using geomagnetic condition, and evaluate actual ability for predicting geoeffective solar wind arrival at ACE from STEREO-A and B solar wind measurement, by assuming simple corotating structures in interplanetary space. The results show that geomagnetic disturbances are more difficult to be predicted than quiet intervals, suggesting that the simple correlation method of solar wind measurement at separated solar longitude is not enough for accurately predicting geomagnetic disturbances, even though the correlation seems generally high. Although in-situ solar wind monitoring at a vantage point trailing behind the earth would definitely improve the prediction capability of solar wind structure arriving at the terrestrial plasma environment, we emphasize that the predictive ability of geoeffective disturbances would still remain low. We suggest that more sophisticated prediction schemes should be developed.
文摘In the present paper dependence of geomagnetic activity on the solar-wind plasma and interplanetary magnetic field (IMF) parameters has been studied. We have taken interplanetary solar wind data at the instant of Dst minimum. Our study consists of 200 geomagnetic storms weighed by disturbance storm time (Dst) -50 nT, observed during solar cycle 23. The study suggests that the strength of the geomagnetic storm is strongly dependent on the total magnetic field Btotal. The correlation (-0.72) has been found reasonable. In perspective of previous studies, the strength of the geomagnetic storm is strongly dependent on the southward component (Bz) whereas in present study exposes that the correlation (0.22) is weak. This result indicates that solar wind southward magnetic field component Bz has significant growth particularly before the main phase of geomagnetic storm (not during the main phase). The present result implies that neither density nor temperature is significantly related to the variation of geomagnetic disturbance;rather the effects of the pressure and speed. However, a low plasma beta during highly geoeffective event seems to be an important criterion.
基金Supported partly bv RFBR (No. 04-05-39008)the Foundation for State Support of Leading Scientific Schools of the Russian Federation (No. NSh-272.2003.5)the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘This paper analyzes the state of the ionosphere during two geomagnetic storms of a different intensity evolving in different sectors of local time in different seasons. There were used the data from a network of ionospheric stations located in the opposite longitudinal sectors of 80°-150° E and 250°-310° E.This analysis has permitted us to conclude that the detected differences in the variations of the disturbances are likely to be determined by the local time difference of the geomagnetic storm development, its intensity and by the different illumination conditions of the ionosphere.
文摘In this paper the characteristics of Sq variation of geomagnetic field in the region of the Chinese Great Wall Station (CGWS), Antarctica, in winter are analyzed from geomagnetic data obtained at the Geomagnetic Observatory of CGWS. The result enables us to reveal the following aspects: (1) The pattern of Sq variation at CGWS in early (Apr.) and Late winter (Sep.) is similar to that at Beijing Geomagnetic Observatory (BJO) at the middle latitude in the Northern Hemisphere. It may be controlled by the midlatitudinal ionospheric dynamo current. Amplitude of Sq variation is very small, and the harmonics in 8 hours or shorter periods in midwinter (June and July) is predominant because of the decreased effect of solar ultraviolet radiation and the dominant geomagnetic disturbance at high latitudes. (2) The vectors of Sq-equivalent current in the daytime are about five times more than that in the night. The direction of the vectors is clockwise in the daytime (08-15h) and counterclockwise in the night in early and late winter. Both of the vectors are very small because of the effect of the current density in the ionosphere is relatively weak in midwinter. The direction of vectors of Sq-equivalent current at CGWS in early and late winter is different from that in midwinter. It may be affected by the ionospheric current and field-aligned current in the polar region.
文摘Aim of this paper is to reveal whether the geomagnetic activity (GMA) and meteorological factors (MFs) affect vascular parameters of healthy volunteers. As a trial study we used new device “Tonocard,” and new vascular parameters for study—a pulse wave velocity (PWV) and an endothelial function (EnF) in addition to blood pressure measurements. These parameters never investigated before in such aspects. As far as novelty of device itself and investigated parameters we limited ourselves by monitoring only four healthy volunteers (without cardiovascular pathology). To analyze the sensitivity of their aforementioned medical indices to GMA and MFs two independent mathematical approaches were used, one of whom is based on traditional methods of mathematical statistics and the other on the theory of pattern recognition Dependence of physiological characteristics on the atmospheric temperature, revealed by both applied mathematical approaches, showed complex non-linear character of biological replies: the reaction has a different form in different temperature ranges and is manifested in the form of synchronization of slow variations of physiological and atmospheric parameters (trends) with a period of several days, while the daily variations were virtually independent. The systolic blood pressure (SBP), PWV and a difference between two specially selected values of PWV (DPWV) are approximately equally depending on atmospheric temperature, which accounts for an average of 26% to 28% of their variations. Sensitivity to the GMA for this test was found only for PWV.
文摘Based on the existing geomagnetic diurnal variation theory and correction method,this paper makes a comprehensive analysis of the international geomagnetic quiet diurnal variation by Fourier Transform and one-dimensional Continuous Wavelet Transform.The frequency band greater than 0.2 Hz is the embodiment of the geomagnetic disturbance field in the frequency domain.Discrete Wavelet Transform is used to separate the variation,thus improving accuracy of the existing geomagnetic diurnal variation correction method.According to the characteristics of variation and Discrete Wavelet Decomposition,Sym8 wavelet is selected as the basic wavelet to decompose the data at 7 layers.The long-term and short-term variation of geomagnetic diurnal variation are effectively separated from the geomagnetic disturbance part under the condition of ensuring the fidelity.Compared with the results of Fourier Series decomposition and low-pass filter,the processing effect of Discrete Wavelet Transform is better.The effective separation and correction of short-term,long-term variation and geomagnetic disturbances can improve the quality of diurnal variation correction in marine geomagnetic measurement,reduce the error accumulation in the process of marine geomagnetic data processing,and improve the scientificity and accuracy of the current diurnal variation correction methods.
基金Supported by Russian Foundation for Basic Research (No. 04-05-39008, N02-05-64570)the China-Russia Joint Research Center on Space WeatherChinese Academy of Sciences
文摘This paper presents simulated results of the ionospheric behavior during few geomagnetic storms,which were occurred in the different seasons. The numerical model for ionosphere-plasmasphere coupling was used to interpret the observed variation of ionosphere structure. Reasons why the positive storms are dominant in the winter whereas the negative ones are dominant in the summer season present the special interest for the mid-latitude ionosphere. A theoretical analysis of the processes controlling the ionospheric response to the geomagnetic storms has showed a good agreement between the simulated results and measurements, as well as the crucial role of the neutral composition variations to fit the calculated and the observed ionospheric parameters.
文摘1研究背景。Hayakawa在1996年提出的地磁垂直强度极化方法在我国广泛应用。该方法通过数值模拟获知一次源来自高空电离层的极化值小于1,源自于震源的极化值大于或约等于1(Hayakawa et al,1996),Hayakawa利用该方法对1993年的关岛8级地震进行研究,发现震前垂直强度极化Yz h值逐渐增大直到发震时达最大值,震后恢复。近年我国学者研究发现地震往往发生在台站出现极化值高值异常后的1个月时间内(冯志生等,2010),发震地点在异常空间等值线的阈值线附近(冯丽丽等,2021),这种极化值异常与外空场活动无关(何畅等,2017)。