The type of subgrade of a railroad foundation is vital to the overall performance of the track structure.With the train speed and tonnage increase,as well as environmental changes,the evaluation and influence of subgr...The type of subgrade of a railroad foundation is vital to the overall performance of the track structure.With the train speed and tonnage increase,as well as environmental changes,the evaluation and influence of subgrade are even more paramount in the railroad track structure performance.A geomechanics classification for subgrade is proposed coupling the stiffness(resilient modulus)and permanent deformation behaviour evaluated by means of repeated triaxial loading tests.This classification covers from fine-to coarse-grained soils,grouped by UIC and ASTM.For this achievement,we first summarize the main models for estimating resilient modulus and permanent deformation,including the evaluation of their robustness and their sensitivity to mechanical and environmental parameters.This is followed by the procedure required to arrive at the geomechanical classification and rating,as well as a discussion of the influence of environmental factors.This work is the first attempt to obtain a new geomechanical classification that can be a useful tool in the evaluation and modelling of the foundation of railway structures.展开更多
基金This work was partially carried out under the framework of In2Track,a research project of Shift2Rail.This work was partly financed by FCT/MCTES through national funds(PIDDAC)under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering(ISISE)under reference UIDB/04029/2020It has been also financially supported by national funds through FCT—Foundation for Science and Technology,under grant agreement[PD/BD/127814/2016]attributed to Ana Ramos.
文摘The type of subgrade of a railroad foundation is vital to the overall performance of the track structure.With the train speed and tonnage increase,as well as environmental changes,the evaluation and influence of subgrade are even more paramount in the railroad track structure performance.A geomechanics classification for subgrade is proposed coupling the stiffness(resilient modulus)and permanent deformation behaviour evaluated by means of repeated triaxial loading tests.This classification covers from fine-to coarse-grained soils,grouped by UIC and ASTM.For this achievement,we first summarize the main models for estimating resilient modulus and permanent deformation,including the evaluation of their robustness and their sensitivity to mechanical and environmental parameters.This is followed by the procedure required to arrive at the geomechanical classification and rating,as well as a discussion of the influence of environmental factors.This work is the first attempt to obtain a new geomechanical classification that can be a useful tool in the evaluation and modelling of the foundation of railway structures.