This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground d...This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground deformation,fault reactivation,induced seismicity and crack propagation,is presented.It is indicated that although all the processes involved are not fully understood,integration of all available data,such as ground survey,geological conditions,microseismicity and ground level deformation,has led to many new insights into the rock mechanical response to CO2injection.The review also shows that in geomechanical modeling,continuum modeling methods are predominant compared with discontinuum methods.It is recommended to develop continuum-discontinuum numerical methods since they are more convenient for geomechanical modeling of CO2geological storage,especially for fracture propagation simulation.The Mohr-Coulomb criterion is widely used in prediction of rock mass mechanical behavior.It would be better to use a criterion considering the effect of the intermediate principal stress on rock mechanical behavior,especially for the stability analysis of deeply seated rock engineering.Some challenges related to geomechanical modeling of CO2geological storage are also discussed.展开更多
This paper presents a three-dimensional fully hydro-mechanical coupled distinct element study on fault reactivation and induced seismicity due to hydraulic fracturing injection and subsequent backflow process,based on...This paper presents a three-dimensional fully hydro-mechanical coupled distinct element study on fault reactivation and induced seismicity due to hydraulic fracturing injection and subsequent backflow process,based on the geological data in Horn River Basin,Northeast British Columbia,Canada.The modeling results indicate that the maximum magnitude of seismic events appears at the fracturing stage.The increment of fluid volume in the fault determines the cumulative moment and maximum fault slippage,both of which are essentially proportional to the fluid volume.After backflow starts,the fluid near the joint intersection keeps flowing into the critically stressed fault,rather than backflows to the wellbore.Although fault slippage is affected by the changes of both pore pressure and ambient rock stress,their contributions are different at fracturing and backflow stages.At fracturing stage,pore pressure change shows a dominant effect on induced fault slippage.While at backflow stage,because the fault plane is under a critical stress state,any minor disturbance would trigger a fault slippage.The energy analysis indicates that aseismic deformation takes up a majority of the total deformation energy during hydraulic fracturing.A common regularity is found in both fracturing-and backflow-induced seismicity that the cumulative moment and maximum fault slippage are nearly proportional to the injected fluid volume.This study shows some novel insights into interpreting fracturing-and backflowinduced seismicity,and provides useful information for controlling and mitigating seismic hazards due to hydraulic fracturing.展开更多
In this paper,the geomechanical impact of large-scale carbon dioxide(CO) storage in depleted Dutch gas fields is compared with the impact of COstorage in saline aquifers.The geomechanical behaviour of four potential C...In this paper,the geomechanical impact of large-scale carbon dioxide(CO) storage in depleted Dutch gas fields is compared with the impact of COstorage in saline aquifers.The geomechanical behaviour of four potential COstorage sites is examined using flow and geomechanical simulations.Many gas reservoirs in the Netherlands are found in fault blocks,one to a few kilometres wide,laterally bounded by sealing faults.Aquifer depletion or re-pressurization in the lateral direction is seldom an issue because of a lack of active aquifers.Reservoir pressure changes are therefore limited to a gas-bearing fault block,while the induced stress changes affect the gas reservoir and extend 1-3 km away into the surrounding rock.Arguments in favour of COstorage in depleted gas fields are:proven seal quality,availability of field data,no record of seal integrity failure by fault reactivation from the seismically active producing Dutch gas fields,and the potential benefits of restoring the virgin formation pressure and stress state to geomechanical stability.On the other hand,COinjection in saline aquifers causes pressure build-up that exceeds the virgin hydrostatic pressure.Stress perturbations resulting from pressure build-up affect large areas,extending tens of kilometres away from the injection wells.Induced stresses in top seals are.however,small and do not exceed a few tenths of megapascal for a pressure build-up of a few megapascals in the storage formation.Geomechanical effects on top seals are weak,but could be enhanced close to the injection zone by the thermal effects of injection.Uncertainties related to characterisation of large areas affected by pressure build-up are significant,and seal quality and continuity are more difficult to be demonstrated for aquifers than for depleted gas reservoirs that have held hydrocarbons for millions of years.展开更多
This work develops a three-dimensional(3D) multiscale model to analyze a complex carbon dioxide(CO_2) faulted reservoir that includes some key geologic features of the San Andreas and nearby faults southwest of the Ki...This work develops a three-dimensional(3D) multiscale model to analyze a complex carbon dioxide(CO_2) faulted reservoir that includes some key geologic features of the San Andreas and nearby faults southwest of the Kimberlina site.The model uses the STOMP-CO2 code for flow modeling that is coupled to the ABAQUS~ finite element package for geomechanical analysis.A 3D ABAQUS~ finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements.Five zones with different mineral compositions are considered:shale,sandstone,fault damaged sandstone,fault damaged shale,and fault core.Rocks' elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanaka approach(EMTA).which can account for up to 15 mineral phases.The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation.A STOMP-CO2 grid that exactly maps the ABAQUS~ finite element model is built for coupled hydromechanical analyses.Simulations of the reservoir assuming three different crack pattern situations(including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO_2 due to cracks that enhance the permeability of the fault damage zones.The results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO_2 plume.Potential hydraulic fracture and tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties.展开更多
Knowledge of the present-day in-situ stress distribution is greatly import-ant for better understanding of conventional and unconventional hydro-carbon reservoirs in many aspects,e.g,reservoir management,wellbore stab...Knowledge of the present-day in-situ stress distribution is greatly import-ant for better understanding of conventional and unconventional hydro-carbon reservoirs in many aspects,e.g,reservoir management,wellbore stability asssment,etc.In tectonically stable regions,the present-day in-situ stress field in terms of stress distribution is 1argely controlled by lithological changes,which can be predicted through|a numerical simulation method incorporating specific mechanical properties of the subsurface reservoir.In this study,a workflow was presented to predict the present-day in-situ stress field based on the finite element method(FEM).Sequentially,it consists of:i)building a three-dimensional(3D)geometric framework,i)creating a 3D petrophysical parameter field,11)integrating the geometric framework with petrophysical parameters,iv)setting up a 3D heterogeneous geomechanical model,and finally,v)calculating the present-day in-situ stress distribution and calibrating the prediction with measured stress data,e.g.,results from the extended leak-off tests(XLOTs).The approach was sucessfully applied to the Block W in Ordos Basin of central China.The results indicated that the workflow and models presented in this study could be used as an effective tool to provide insights into stress perturbations in subsurface reservoirs and geological references for subsequent analysis.展开更多
There is a huge amount of marine shale gas resources in the southern Sichuan Basin in China, and most of the resources are at the buried depth of 3500</span><span style="font-family:""> <...There is a huge amount of marine shale gas resources in the southern Sichuan Basin in China, and most of the resources are at the buried depth of 3500</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">4500 meters. At present, deep shale gas is in the early stage of exploration and development. In order to achieve large-scale efficient development, in addition to optimizing favorable blocks, it is also to identify the optimal target in the vertical direction combine geology, drilling, and fracturing. Therefore, Taking the Longmaxi formation shale in the Luzhou block as the research object, based on drilling, logging, and core experiment data, through single well and 3D geomechanical modeling methods, analyze the characteristics of organic matter abundance, porosity, pore pressure, collapse pressure, mineral composition and in-situ stress of different layers of shale in Longmaxi formation. Systematically summarized the main controlling factors of the “sweet spot” of deep shale gas and establish the comprehensive evaluation system of deep shale gas “sweet spots”, to clarify the optimal “sweet spots” of geology, drilling, and fracturing in the Longmaxi reservoir. Results show that the total organic carbon content, porosity, and gas saturation of the long111 layer are higher than other layers. The Long111 layer has a low collapse pressure and a high compressive strength, the risk of wellbore instability is relatively low. The stress difference coefficient of All layers is less than 0.3, and the brittleness index of the Long111 layer is 62.35%. A complex fracture network is easier to form after fracturing. The conclusion shows that the Long111 layer is the optimal reservoir section of the Longmaxi Formation. Ensure the drilled rate of the Long111 layer and maximize the length of the horizontal section can obtain higher production.展开更多
The landslide hazards occurring in the complex geological genesis accumulation body are usually controlled by the coupling action of many internal and external factors.Therefore,this paper takes the dam-front Danbo ac...The landslide hazards occurring in the complex geological genesis accumulation body are usually controlled by the coupling action of many internal and external factors.Therefore,this paper takes the dam-front Danbo accumulation body landslide of Yangfanggou hydropower station on the Yalong River as the geological prototype,and discusses the process and mechanism of slope stability degradation under the combined action of rainfall and slope construction.Based on the detailed understanding of the basic characteristics of the accumulation body,the development characteristics of the landslide and the construction situation of the slope engineering,the study conducted correlation analysis between rainfall and landslide displacement,the physical and mechanical tests of all types of rocksoil masses,and the numerical simulation testing of seepage field variation of the landslide section.It is found that the special slope structure and material composition of the old landslide accumulation layer on the upper part of the Danbo accumulation body are the internal factors for the occurrence of thrust loadinduced landslide,and the construction of the slope engineering not only creates free space conditions for sliding,but also provides channels for the infiltration of rainfall into the slope after confluence,which is an external factor that caused the mechanical properties of the sliding zone soil to gradually weaken from the trailing edge to the leading edge.The geomechanical model of such landslide is that the active section of the trailing edge produces the"source of force",the transition section of the middle section affects the occurrence of sliding,and the anti-sliding section of the leading edge controls the occurrence of landslide hazards.The results of this research provide not only a useful supplement to the theory of landslide formation mechanisms but also a scientific basis for guiding the prevention and control of similar hazards.展开更多
Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surroundi...Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surrounding the cross-fault tunnel with poor geological conditions has been chosen for the study.The support capacity of 2^(nd) Generation-Negative Poisson’s Ratio(2G-NPR)bolt in an active fault tunnel has been carried out on the basis of relevant results obtained from the geomechanical model test and numerical investigations of failure model for existing unsupported fault tunnel.The investigation shows that surrounding rock of the tunnel is prone to shear deformation and crack formation along the fault,as a result,the rock mass on the upper part of the fault slips as a whole.Furthermore,small-scale deformation and loss of blocks are observed around the tunnel;however,the 2G-NPR bolt support is found to be helpful in keeping the overall tunnel intact without any damage and instability.Due to the blocking effect of fault,the stress of the surrounding rock on the upper and lower parts of the fault is significantly different,and the stress at the left shoulder of the tunnel is greater than that at the right shoulder.The asymmetrical arrangement of 2G-NPR bolts can effectively control the asymmetric deformation and instability of the surrounding rock.The present numerical scheme is in good agreement with the model test results,and can reasonably reflect the stress and displacement characteristics of the surrounding rock of the tunnel.In comparison to unsupported and ordinary PR(Poisson’s Ratio)bolt support,2G-NPR bolt can effectively limit the fault slip and control the stability of the surrounding rock of the fault tunnel.The research findings may serve as a guideline for the use of 2G-NPR bolts in fault tunnel support engineering.展开更多
Hydropower projects are rapidly developing in China at present, and a number of high daras and large reservoirs are currently under construction or will soon be built. These large projects are mainly located on the gr...Hydropower projects are rapidly developing in China at present, and a number of high daras and large reservoirs are currently under construction or will soon be built. These large projects are mainly located on the great rivers in West China with complicated topographical and geological conditions. Evaluation of stability and safety of these high dam projects is an important topic. Geomechanical model test is one of the main methods to study the global stability of high dam and foundation. In this paper, a comprehensive testing method that combines overloading and strength reduction in a model is proposed. In this method, both the influence of excessive flooding and the effects of strength reduction of rock masses and weak structural planes on dam stability are considered. Thus, the comprehensive testing method can accurately incorporate multiple factors that affect the global stability of high dam and its foundation. Based on the failure testing principle and model similarity theory, a similarity relation formula for safety evaluation through comprehensive test is established. A new model material, temperature-dependent analogous material, is also developed. By rising the temperature and reducing the strength of the mod,~l material, the mechanical behaviors resulting from gradual strength reduction can be simulated. Thus, the comprehensive testing method is realized in a single model. For case studies, the comprehensive geomechanical model test is conducted for Jinpinlg I and Xiaowan high arch dam projects.展开更多
A simplified geomechanical model was proposed by considering three typical neckingtype slopes;this model lays a foundation for the further investigation of the deformation behaviors of such slopes.Three physical model...A simplified geomechanical model was proposed by considering three typical neckingtype slopes;this model lays a foundation for the further investigation of the deformation behaviors of such slopes.Three physical models of necking-type slopes were built according to the geomechanical model with slope evolution stages.Finally,preliminary calculations related to the arching effect in the physical model were conducted.Three evolution stages of necking-type slopes,namely,the initial stage,compression stage,and failure stage,were presented based on the formation and disappearance of the arching effect within the slope.The specific parameters of the geomechanical model were given.In the setup of the tilting test,the failure angle of the necking-type slope model was calculated to be approximately 50°with a large lateral resistance coefficient.The proposed geomechanical model and physical models of necking-type slopes provide guidance for the establishment of geomechanical and physical models of landslides at specific sites.展开更多
It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stabi...It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stability and the extension probability of fractures. Numerical simulation forecasted the dam displacement and the operating behavior based on the parameters obtained from the back analysis. Geomechanical model test was based on small block masonry and the models with or without fractures were both tested. The results show that the deformation of dams is in line with general rules at a normal water load and the extension probability of the existing fractures is very small, which has no significant impact on the global stability of dams. Moreover, the failure process of arch dams with the existing fractures in dams at overload scenarios is similar to the one without the embedded fractures, i.e., the failure crack which is not caused by the existing fractures inside comes into being on the surface of dams itself.展开更多
In order to investigate the influence of face instability for tunnels with different burial depths in sandy cobble strata on earth pressure and the instability region,geomechanical model tests and numerical simulation...In order to investigate the influence of face instability for tunnels with different burial depths in sandy cobble strata on earth pressure and the instability region,geomechanical model tests and numerical simulations were performed.The continuous excavation method was adopted to reduce the pressure of the soil bin and restore the real engineering situation.Earth pressure in three directions of the obser-vation section in front of the tunnel face was monitored during the tunneling of the shield.Evolutions of the lateral stress ratios at dif-ferent stages were also investigated.The instability area of the shield tunnel face in sandy cobble strata with different burial depth ratios during the instability stage was obtained based on the change ratio of earth pressure and compared with existing researches.The earth pressure began to change when the excavation was one shield diameter away from the observation section,and when the excavation reached the observation section,the earth pressure decreased significantly.The burial depth of shield tunnel in the sandy cobble strata has a significant impact on the evolution of soil arch and the size of the failure area.The numerical simulation of the continuum medium cannot reflect the stress redistribution characteristics of the granular body like sandy cobble strata,and the failure area or stress distur-bance area obtained by the model test is larger than the numerical simulation result.Existing methods have deviations in analyzing the failure area of shield tunnel face in sandy cobble strata.It provides not only guidance for shield tunnel excavation engineering in sandy cobble strata,but also a reference for the theoretical research on failure areas.展开更多
Comprehensive mechanized top-coal caving mining is one of the efficient mining methods in coal mines.However,the goaf formed by comprehensive mechanized top-coal caving mining is high,and the goaf roof collapse will c...Comprehensive mechanized top-coal caving mining is one of the efficient mining methods in coal mines.However,the goaf formed by comprehensive mechanized top-coal caving mining is high,and the goaf roof collapse will cause strong dynamic pressure disturbance,especially the collapse of thick hard roof.Strong dynamic pressure disturbance has an influence on the stability of the roadway,which can lead to large deformation.In order to solve the above problem,a comprehensive pressure releasing and constant resistance energy absorbing control method is proposed.Comprehensive pressure releasing can change the roadway roof structure and cut off the stress transfer between goaf and roadway,which can improve the stress environment of the roadway.The constant resistance energy absorbing(CREA)anchor cable can absorb the energy of surrounding rock deformation and resist the impact load of gangue collapse,so as to ensure the stability of roadway disturbed by strong dynamic pressure.A three-dimensional geomechanics model test is carried out,based on the roadway disturbed by strong dynamic pressure of the extra-large coal mine in western China,to verify the control effect of the new control method.The stress and displacement evolution laws of the roadway with traditional control method and new control method are analyzed.The pressure releasing and energy absorbing control mechanism of the new control method is clarified.The geomechanics model test results show that the new control method can increase the range of low stress zone by 150%and reduce the average stress and the displacement by 34.7%and 67.8%respectively,compared with the traditional control method.The filed application results show that the new control method can reduce the roadway surrounding rock displacement by 67.4%compared with the traditional control method.It shows that the new control method can effectively control the displacement of the roadway disturbed by strong dynamic pressure and ensure that the roadway meets the safety requirements.On this basis,the engineering suggestions for large deformation control of this kind of roadway are put forward.The new control method can provide a control idea for the roadway disturbed by strong dynamic pressure.展开更多
Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant...Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.展开更多
基金finically supported by the National Natural Science Foundation of China(Grant Nos.41272349 and 51322906)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-DQC029)
文摘This paper focuses on the progress in geomechanical modeling associated with carbon dioxide(CO2)geological storage.The detailed review of some geomechanical aspects,including numerical methods,stress analysis,ground deformation,fault reactivation,induced seismicity and crack propagation,is presented.It is indicated that although all the processes involved are not fully understood,integration of all available data,such as ground survey,geological conditions,microseismicity and ground level deformation,has led to many new insights into the rock mechanical response to CO2injection.The review also shows that in geomechanical modeling,continuum modeling methods are predominant compared with discontinuum methods.It is recommended to develop continuum-discontinuum numerical methods since they are more convenient for geomechanical modeling of CO2geological storage,especially for fracture propagation simulation.The Mohr-Coulomb criterion is widely used in prediction of rock mass mechanical behavior.It would be better to use a criterion considering the effect of the intermediate principal stress on rock mechanical behavior,especially for the stability analysis of deeply seated rock engineering.Some challenges related to geomechanical modeling of CO2geological storage are also discussed.
基金supported by the Key Innovation Team Program of Innovation Talents Promotion Plan by Ministry of Science and Technology of China(Grant No.2016RA4059)National Natural Science Foundation of China(Grant Nos.41672268 and 41772286)。
文摘This paper presents a three-dimensional fully hydro-mechanical coupled distinct element study on fault reactivation and induced seismicity due to hydraulic fracturing injection and subsequent backflow process,based on the geological data in Horn River Basin,Northeast British Columbia,Canada.The modeling results indicate that the maximum magnitude of seismic events appears at the fracturing stage.The increment of fluid volume in the fault determines the cumulative moment and maximum fault slippage,both of which are essentially proportional to the fluid volume.After backflow starts,the fluid near the joint intersection keeps flowing into the critically stressed fault,rather than backflows to the wellbore.Although fault slippage is affected by the changes of both pore pressure and ambient rock stress,their contributions are different at fracturing and backflow stages.At fracturing stage,pore pressure change shows a dominant effect on induced fault slippage.While at backflow stage,because the fault plane is under a critical stress state,any minor disturbance would trigger a fault slippage.The energy analysis indicates that aseismic deformation takes up a majority of the total deformation energy during hydraulic fracturing.A common regularity is found in both fracturing-and backflow-induced seismicity that the cumulative moment and maximum fault slippage are nearly proportional to the injected fluid volume.This study shows some novel insights into interpreting fracturing-and backflowinduced seismicity,and provides useful information for controlling and mitigating seismic hazards due to hydraulic fracturing.
文摘In this paper,the geomechanical impact of large-scale carbon dioxide(CO) storage in depleted Dutch gas fields is compared with the impact of COstorage in saline aquifers.The geomechanical behaviour of four potential COstorage sites is examined using flow and geomechanical simulations.Many gas reservoirs in the Netherlands are found in fault blocks,one to a few kilometres wide,laterally bounded by sealing faults.Aquifer depletion or re-pressurization in the lateral direction is seldom an issue because of a lack of active aquifers.Reservoir pressure changes are therefore limited to a gas-bearing fault block,while the induced stress changes affect the gas reservoir and extend 1-3 km away into the surrounding rock.Arguments in favour of COstorage in depleted gas fields are:proven seal quality,availability of field data,no record of seal integrity failure by fault reactivation from the seismically active producing Dutch gas fields,and the potential benefits of restoring the virgin formation pressure and stress state to geomechanical stability.On the other hand,COinjection in saline aquifers causes pressure build-up that exceeds the virgin hydrostatic pressure.Stress perturbations resulting from pressure build-up affect large areas,extending tens of kilometres away from the injection wells.Induced stresses in top seals are.however,small and do not exceed a few tenths of megapascal for a pressure build-up of a few megapascals in the storage formation.Geomechanical effects on top seals are weak,but could be enhanced close to the injection zone by the thermal effects of injection.Uncertainties related to characterisation of large areas affected by pressure build-up are significant,and seal quality and continuity are more difficult to be demonstrated for aquifers than for depleted gas reservoirs that have held hydrocarbons for millions of years.
基金provided by the National Energy Technology Laboratory and U.S.DOE,Office of Fossil Energy as part of the National Risk Assessment Partnershipfunded by the U.S.DOE Office of Vehicle Technologies
文摘This work develops a three-dimensional(3D) multiscale model to analyze a complex carbon dioxide(CO_2) faulted reservoir that includes some key geologic features of the San Andreas and nearby faults southwest of the Kimberlina site.The model uses the STOMP-CO2 code for flow modeling that is coupled to the ABAQUS~ finite element package for geomechanical analysis.A 3D ABAQUS~ finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements.Five zones with different mineral compositions are considered:shale,sandstone,fault damaged sandstone,fault damaged shale,and fault core.Rocks' elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanaka approach(EMTA).which can account for up to 15 mineral phases.The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation.A STOMP-CO2 grid that exactly maps the ABAQUS~ finite element model is built for coupled hydromechanical analyses.Simulations of the reservoir assuming three different crack pattern situations(including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO_2 due to cracks that enhance the permeability of the fault damage zones.The results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO_2 plume.Potential hydraulic fracture and tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties.
文摘Knowledge of the present-day in-situ stress distribution is greatly import-ant for better understanding of conventional and unconventional hydro-carbon reservoirs in many aspects,e.g,reservoir management,wellbore stability asssment,etc.In tectonically stable regions,the present-day in-situ stress field in terms of stress distribution is 1argely controlled by lithological changes,which can be predicted through|a numerical simulation method incorporating specific mechanical properties of the subsurface reservoir.In this study,a workflow was presented to predict the present-day in-situ stress field based on the finite element method(FEM).Sequentially,it consists of:i)building a three-dimensional(3D)geometric framework,i)creating a 3D petrophysical parameter field,11)integrating the geometric framework with petrophysical parameters,iv)setting up a 3D heterogeneous geomechanical model,and finally,v)calculating the present-day in-situ stress distribution and calibrating the prediction with measured stress data,e.g.,results from the extended leak-off tests(XLOTs).The approach was sucessfully applied to the Block W in Ordos Basin of central China.The results indicated that the workflow and models presented in this study could be used as an effective tool to provide insights into stress perturbations in subsurface reservoirs and geological references for subsequent analysis.
文摘There is a huge amount of marine shale gas resources in the southern Sichuan Basin in China, and most of the resources are at the buried depth of 3500</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">4500 meters. At present, deep shale gas is in the early stage of exploration and development. In order to achieve large-scale efficient development, in addition to optimizing favorable blocks, it is also to identify the optimal target in the vertical direction combine geology, drilling, and fracturing. Therefore, Taking the Longmaxi formation shale in the Luzhou block as the research object, based on drilling, logging, and core experiment data, through single well and 3D geomechanical modeling methods, analyze the characteristics of organic matter abundance, porosity, pore pressure, collapse pressure, mineral composition and in-situ stress of different layers of shale in Longmaxi formation. Systematically summarized the main controlling factors of the “sweet spot” of deep shale gas and establish the comprehensive evaluation system of deep shale gas “sweet spots”, to clarify the optimal “sweet spots” of geology, drilling, and fracturing in the Longmaxi reservoir. Results show that the total organic carbon content, porosity, and gas saturation of the long111 layer are higher than other layers. The Long111 layer has a low collapse pressure and a high compressive strength, the risk of wellbore instability is relatively low. The stress difference coefficient of All layers is less than 0.3, and the brittleness index of the Long111 layer is 62.35%. A complex fracture network is easier to form after fracturing. The conclusion shows that the Long111 layer is the optimal reservoir section of the Longmaxi Formation. Ensure the drilled rate of the Long111 layer and maximize the length of the horizontal section can obtain higher production.
基金funded by the National Natural Science Foundation of China(Grant Nos.41572308 and 41977226)Power China Huadong Engineering Corporation Limited。
文摘The landslide hazards occurring in the complex geological genesis accumulation body are usually controlled by the coupling action of many internal and external factors.Therefore,this paper takes the dam-front Danbo accumulation body landslide of Yangfanggou hydropower station on the Yalong River as the geological prototype,and discusses the process and mechanism of slope stability degradation under the combined action of rainfall and slope construction.Based on the detailed understanding of the basic characteristics of the accumulation body,the development characteristics of the landslide and the construction situation of the slope engineering,the study conducted correlation analysis between rainfall and landslide displacement,the physical and mechanical tests of all types of rocksoil masses,and the numerical simulation testing of seepage field variation of the landslide section.It is found that the special slope structure and material composition of the old landslide accumulation layer on the upper part of the Danbo accumulation body are the internal factors for the occurrence of thrust loadinduced landslide,and the construction of the slope engineering not only creates free space conditions for sliding,but also provides channels for the infiltration of rainfall into the slope after confluence,which is an external factor that caused the mechanical properties of the sliding zone soil to gradually weaken from the trailing edge to the leading edge.The geomechanical model of such landslide is that the active section of the trailing edge produces the"source of force",the transition section of the middle section affects the occurrence of sliding,and the anti-sliding section of the leading edge controls the occurrence of landslide hazards.The results of this research provide not only a useful supplement to the theory of landslide formation mechanisms but also a scientific basis for guiding the prevention and control of similar hazards.
基金supported by the National Natural Science Foundation of China(NSFC)(41941018)the Program of China Scholarship Council(202106430031)。
文摘Active faults are a common adverse geological phenomenon that can occur during tunnel excavation and has a very negative impact on the construction and operation of the tunnel.In this paper,the grade IV rock surrounding the cross-fault tunnel with poor geological conditions has been chosen for the study.The support capacity of 2^(nd) Generation-Negative Poisson’s Ratio(2G-NPR)bolt in an active fault tunnel has been carried out on the basis of relevant results obtained from the geomechanical model test and numerical investigations of failure model for existing unsupported fault tunnel.The investigation shows that surrounding rock of the tunnel is prone to shear deformation and crack formation along the fault,as a result,the rock mass on the upper part of the fault slips as a whole.Furthermore,small-scale deformation and loss of blocks are observed around the tunnel;however,the 2G-NPR bolt support is found to be helpful in keeping the overall tunnel intact without any damage and instability.Due to the blocking effect of fault,the stress of the surrounding rock on the upper and lower parts of the fault is significantly different,and the stress at the left shoulder of the tunnel is greater than that at the right shoulder.The asymmetrical arrangement of 2G-NPR bolts can effectively control the asymmetric deformation and instability of the surrounding rock.The present numerical scheme is in good agreement with the model test results,and can reasonably reflect the stress and displacement characteristics of the surrounding rock of the tunnel.In comparison to unsupported and ordinary PR(Poisson’s Ratio)bolt support,2G-NPR bolt can effectively limit the fault slip and control the stability of the surrounding rock of the fault tunnel.The research findings may serve as a guideline for the use of 2G-NPR bolts in fault tunnel support engineering.
基金Supported by the National Natural Science Foundation of China (51109152)the National Basic Research Program of China (973 Program) (2010CB226802)the Doctoral Programs Foundation of the Ministry of Education of China (20100181110077)
文摘Hydropower projects are rapidly developing in China at present, and a number of high daras and large reservoirs are currently under construction or will soon be built. These large projects are mainly located on the great rivers in West China with complicated topographical and geological conditions. Evaluation of stability and safety of these high dam projects is an important topic. Geomechanical model test is one of the main methods to study the global stability of high dam and foundation. In this paper, a comprehensive testing method that combines overloading and strength reduction in a model is proposed. In this method, both the influence of excessive flooding and the effects of strength reduction of rock masses and weak structural planes on dam stability are considered. Thus, the comprehensive testing method can accurately incorporate multiple factors that affect the global stability of high dam and its foundation. Based on the failure testing principle and model similarity theory, a similarity relation formula for safety evaluation through comprehensive test is established. A new model material, temperature-dependent analogous material, is also developed. By rising the temperature and reducing the strength of the mod,~l material, the mechanical behaviors resulting from gradual strength reduction can be simulated. Thus, the comprehensive testing method is realized in a single model. For case studies, the comprehensive geomechanical model test is conducted for Jinpinlg I and Xiaowan high arch dam projects.
基金funded by the National Nature Science Foundation of China(No.42207216)the National Major Scientific Instruments and Equipment Development Projects of China(No.41827808)the National Key Research and Development Program of China(No.2017YFC1501305)。
文摘A simplified geomechanical model was proposed by considering three typical neckingtype slopes;this model lays a foundation for the further investigation of the deformation behaviors of such slopes.Three physical models of necking-type slopes were built according to the geomechanical model with slope evolution stages.Finally,preliminary calculations related to the arching effect in the physical model were conducted.Three evolution stages of necking-type slopes,namely,the initial stage,compression stage,and failure stage,were presented based on the formation and disappearance of the arching effect within the slope.The specific parameters of the geomechanical model were given.In the setup of the tilting test,the failure angle of the necking-type slope model was calculated to be approximately 50°with a large lateral resistance coefficient.The proposed geomechanical model and physical models of necking-type slopes provide guidance for the establishment of geomechanical and physical models of landslides at specific sites.
基金supported by the National Natural Science Foundation of China(Grant No.51479097)the State Key Laboratory of Hydroscience,and Engineering of Hydroscience(Grant No.2013-KY-2)
文摘It is important to estimate the probability of fracture extension and its impact on the safety of arch dams with fractures. Numerical simulation and geomechanical model test were combined to evaluate the overall stability and the extension probability of fractures. Numerical simulation forecasted the dam displacement and the operating behavior based on the parameters obtained from the back analysis. Geomechanical model test was based on small block masonry and the models with or without fractures were both tested. The results show that the deformation of dams is in line with general rules at a normal water load and the extension probability of the existing fractures is very small, which has no significant impact on the global stability of dams. Moreover, the failure process of arch dams with the existing fractures in dams at overload scenarios is similar to the one without the embedded fractures, i.e., the failure crack which is not caused by the existing fractures inside comes into being on the surface of dams itself.
基金the financial support provided by Natural Science Foundation of China(Grant Nos.51978019,52278382)Beijing Natural Science Foundation,China(Grant No.8222004).
文摘In order to investigate the influence of face instability for tunnels with different burial depths in sandy cobble strata on earth pressure and the instability region,geomechanical model tests and numerical simulations were performed.The continuous excavation method was adopted to reduce the pressure of the soil bin and restore the real engineering situation.Earth pressure in three directions of the obser-vation section in front of the tunnel face was monitored during the tunneling of the shield.Evolutions of the lateral stress ratios at dif-ferent stages were also investigated.The instability area of the shield tunnel face in sandy cobble strata with different burial depth ratios during the instability stage was obtained based on the change ratio of earth pressure and compared with existing researches.The earth pressure began to change when the excavation was one shield diameter away from the observation section,and when the excavation reached the observation section,the earth pressure decreased significantly.The burial depth of shield tunnel in the sandy cobble strata has a significant impact on the evolution of soil arch and the size of the failure area.The numerical simulation of the continuum medium cannot reflect the stress redistribution characteristics of the granular body like sandy cobble strata,and the failure area or stress distur-bance area obtained by the model test is larger than the numerical simulation result.Existing methods have deviations in analyzing the failure area of shield tunnel face in sandy cobble strata.It provides not only guidance for shield tunnel excavation engineering in sandy cobble strata,but also a reference for the theoretical research on failure areas.
基金supported by the National Natural Science Foundation of China (Grant Nos.52074164,42077267,42277174 and 42177130)the Fundamental Research Funds for the Central Universities,China (Grant No.2022JCCXSB03).
文摘Comprehensive mechanized top-coal caving mining is one of the efficient mining methods in coal mines.However,the goaf formed by comprehensive mechanized top-coal caving mining is high,and the goaf roof collapse will cause strong dynamic pressure disturbance,especially the collapse of thick hard roof.Strong dynamic pressure disturbance has an influence on the stability of the roadway,which can lead to large deformation.In order to solve the above problem,a comprehensive pressure releasing and constant resistance energy absorbing control method is proposed.Comprehensive pressure releasing can change the roadway roof structure and cut off the stress transfer between goaf and roadway,which can improve the stress environment of the roadway.The constant resistance energy absorbing(CREA)anchor cable can absorb the energy of surrounding rock deformation and resist the impact load of gangue collapse,so as to ensure the stability of roadway disturbed by strong dynamic pressure.A three-dimensional geomechanics model test is carried out,based on the roadway disturbed by strong dynamic pressure of the extra-large coal mine in western China,to verify the control effect of the new control method.The stress and displacement evolution laws of the roadway with traditional control method and new control method are analyzed.The pressure releasing and energy absorbing control mechanism of the new control method is clarified.The geomechanics model test results show that the new control method can increase the range of low stress zone by 150%and reduce the average stress and the displacement by 34.7%and 67.8%respectively,compared with the traditional control method.The filed application results show that the new control method can reduce the roadway surrounding rock displacement by 67.4%compared with the traditional control method.It shows that the new control method can effectively control the displacement of the roadway disturbed by strong dynamic pressure and ensure that the roadway meets the safety requirements.On this basis,the engineering suggestions for large deformation control of this kind of roadway are put forward.The new control method can provide a control idea for the roadway disturbed by strong dynamic pressure.
基金supported by the Foundation for the Opening of State Key Laboratory for GeoMechanics&Deep Underground Engineering(Grant No.SKLGDUEK2129).
文摘Although super-large-span tunnels ensure convenient transportation,they face many support challenges.The lack of normative construction guidance and the limited number of reference engineering cases pose a significant challenge to the stability control of superlarge-span tunnels.Based on the geological conditions of a super-large-span tunnel(span=32.17 m)at the bifurcation section of the Shenzhen interchange,this study determined support parameters via theoretical calculation,numerical simulation,and engineering analogy.The support effects of negative Poisson’s ratio(NPR)anchor cables and ordinary anchor cables on super-long-span tunnels were simulated and studied.Further,based on FLAC3D simulations,the surrounding rock stress field of NPR anchor cables was analyzed under different prestressing conditions,and the mechanism of a long-short combination,high-prestress compensation NPR anchor cable support was revealed.On the basis of numerical simulations,to our knowledge,the three-dimensional(3D)geomechanical model test of the NPR anchor cable and ordinary anchor cable support for super-large-span tunnel excavation is conducted for the first time,revealing the stress evolution law of super-large-span tunnels,deformation and failure characteristics of the surrounding rock,and the changing trend of the anchor cable’s axial force,and verifies that NPR anchor cables with high preloads are suitable for super-large-span tunnel support and have advantages over ordinary anchor cables.This study can provide a reliable theoretical reference for the support design and stability control of the surrounding rock of similar shallow-buried super-large-span tunnels.