Differential equations of electromagnetic and similar physical fields are generally solved via antiderivative Green’s functions involving integration over a region and its boundary. Research on the Kasner metric reve...Differential equations of electromagnetic and similar physical fields are generally solved via antiderivative Green’s functions involving integration over a region and its boundary. Research on the Kasner metric reveals a variable boundary deemed inappropriate for standard anti-derivatives, suggesting the need for an alternative solution technique. In this work I derive such a solution and prove its existence, based on circulation equations in which the curl of the field is induced by source current density and possibly changes in associated fields. We present an anti-curl operator that is believed novel and we prove that it solves for the field without integration required.展开更多
文摘Differential equations of electromagnetic and similar physical fields are generally solved via antiderivative Green’s functions involving integration over a region and its boundary. Research on the Kasner metric reveals a variable boundary deemed inappropriate for standard anti-derivatives, suggesting the need for an alternative solution technique. In this work I derive such a solution and prove its existence, based on circulation equations in which the curl of the field is induced by source current density and possibly changes in associated fields. We present an anti-curl operator that is believed novel and we prove that it solves for the field without integration required.