In this paper, a novel method for extracting the geometric primitives from geometric data is proposed. Specifically, tabu search is combined with subpixel accuracy to improve detection accuracy and convergent speed. O...In this paper, a novel method for extracting the geometric primitives from geometric data is proposed. Specifically, tabu search is combined with subpixel accuracy to improve detection accuracy and convergent speed. On the one hand, this new shape detection method not only has TS's ability to find the global optimum, but also keeps all advantages of tabu search. On the other hand, it has subpixel accuracy ability to match the local optimum.展开更多
3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A m...3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A method for normalizing moments of 3D objects is proposed, which can set the values of moments of different orders roughly in the same range and be applied to different 3D data formats universally. Then accurate computation of moments for several objects is presented and experiments show that this kind of normalization is very useful for moment invariants in 3D objects analysis and recognition.展开更多
In the field of underwater image processing, the line and rounded objects, like mines and torpedoes, are the most common targets for rec, ognition. Before further analysis, these two image patterns need to be detected...In the field of underwater image processing, the line and rounded objects, like mines and torpedoes, are the most common targets for rec, ognition. Before further analysis, these two image patterns need to be detected and extracted from the underwater images in real-time. Using the subpixel position, direction and curvature information of an edge provided by Zernike Orthogonal Moment (ZOM) edge detection operators, an enhanced Randomized Hough Transform (RHT) to extract straight-lines is developed. This line extraction method consists of two steps : the rough parameters of a line are obtained robustly at first using RHT with large quantization in the Hough space and then the parameters are refined with line fitting techniques. Therefore both the robustness and high precision can be achieved simultaneously. Particularly, the problem of ellipse extraction is often computationally demanding using traditional Hough Transform, since an ellipse is characterized by five parameters. Based on the generalized K-RASAC algorithm, we develop a new ellipse extraction algorithm using the concept of quadratic curve cluster and random sampling technique. We first develop a new representation of quadratic curves, which facilitates quantization and voting for the parameter A that represents a candidate ellipse among the quadratic curves. Then, after selecting two tangent points and calculating the quadratic parameter equation, we vote for the parameter A to determine an ellipse. Thus the problem of ellipse extraction is reduced into finding the local minimum in the A accumulator array. The methods presented have been applied successfully to the extraction of lines and ellipses from synthetic and real underwater images, serving as a basic computer vision module of the underwater objects recognition system. Compared to the standard RHT line extraction method and K-RANSAC ellipse extraction method, our methods have the attractive advantages of obtaining robustness and high precision simultaneously while preserving the merits of high computation speed and small storage requirement.展开更多
This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is...This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the ~iris . Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugman's algorithm.展开更多
基金National Natural Science Foundation of ChinaVice-Chancellors Post Doctoral Fellowship of UNSW,Australia.
文摘In this paper, a novel method for extracting the geometric primitives from geometric data is proposed. Specifically, tabu search is combined with subpixel accuracy to improve detection accuracy and convergent speed. On the one hand, this new shape detection method not only has TS's ability to find the global optimum, but also keeps all advantages of tabu search. On the other hand, it has subpixel accuracy ability to match the local optimum.
基金Supported by National Key Basic Research Program(No.2004CB318006)National Natural Science Foundation of China(Nos.60873164,60573154,60533090,61379082 and 61227802)
文摘3D objects can be stored in computer of different describing ways, such as point set, polyline, polygonal surface and Euclidean distance map. Moment invariants of different orders may have the different magnitude. A method for normalizing moments of 3D objects is proposed, which can set the values of moments of different orders roughly in the same range and be applied to different 3D data formats universally. Then accurate computation of moments for several objects is presented and experiments show that this kind of normalization is very useful for moment invariants in 3D objects analysis and recognition.
文摘In the field of underwater image processing, the line and rounded objects, like mines and torpedoes, are the most common targets for rec, ognition. Before further analysis, these two image patterns need to be detected and extracted from the underwater images in real-time. Using the subpixel position, direction and curvature information of an edge provided by Zernike Orthogonal Moment (ZOM) edge detection operators, an enhanced Randomized Hough Transform (RHT) to extract straight-lines is developed. This line extraction method consists of two steps : the rough parameters of a line are obtained robustly at first using RHT with large quantization in the Hough space and then the parameters are refined with line fitting techniques. Therefore both the robustness and high precision can be achieved simultaneously. Particularly, the problem of ellipse extraction is often computationally demanding using traditional Hough Transform, since an ellipse is characterized by five parameters. Based on the generalized K-RASAC algorithm, we develop a new ellipse extraction algorithm using the concept of quadratic curve cluster and random sampling technique. We first develop a new representation of quadratic curves, which facilitates quantization and voting for the parameter A that represents a candidate ellipse among the quadratic curves. Then, after selecting two tangent points and calculating the quadratic parameter equation, we vote for the parameter A to determine an ellipse. Thus the problem of ellipse extraction is reduced into finding the local minimum in the A accumulator array. The methods presented have been applied successfully to the extraction of lines and ellipses from synthetic and real underwater images, serving as a basic computer vision module of the underwater objects recognition system. Compared to the standard RHT line extraction method and K-RANSAC ellipse extraction method, our methods have the attractive advantages of obtaining robustness and high precision simultaneously while preserving the merits of high computation speed and small storage requirement.
文摘This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the ~iris . Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugman's algorithm.