We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reser...We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reservoirs coupling regimes,we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD,and enhance the memory effects of the overall environment.And the Hilbert-Schmidt norm GQD(two-norm GQD) is always smaller than the trace norm geometric quantum discord(one-norm GQD).Therefore,the one-norm GQD is a better way to measure the quantum correlation.Finally,we propose an effective strategy to improve GQD by using partially collapsing measurements,and we find that the protection effect is better with the increase of the weak measurement strength.展开更多
Geometric quantum discord(GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the s...Geometric quantum discord(GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system.We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them.展开更多
We consider the geometric global quantum discord (GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum proble...We consider the geometric global quantum discord (GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum problem which lies at the core of computing the GGQD for arbitrary two-qubit states. Furthermore, formulae of GGQD of arbitrary two-qubit states and some concrete examples are presented.展开更多
In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model wi...In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with stag- gered Dzyaloshinskii-Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit compar- ison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.展开更多
We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in th...We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three quantum correlations and entanglement of the systems is also analyzed numerically. It is found that novel quantum correlation switches called QD, GMQD, and MID respectively can be constructed with the qubits consisting of electric dipoles coupled by the dipole-dipole interaction and oriented along or against the external electric field. Moreover, with the increase of temperature, QD, GMQD, and MID are more robust than entanglement against the thermal environment. It is also found that for each dipole pair of the three- and four-dipole arrangements, the MID is always the largest and the GMQD the smallest.展开更多
We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord(GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct unde...We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord(GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of entanglement and GMQD. The dynamic evolution of GMQD under two typical kinds of quantum decoherence channels is also investigated. It is shown that there exists a class of initial states for which the GMQD is not destroyed by decoherence in a finite time interval. Furthermore, we establish a factorization law between the initial and final GMQD, which allows us to infer the evolution of entanglement under the influences of the environment.展开更多
A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition i...A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin–Meshkov–Glick and Dicke model.展开更多
We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck(OU) noise. Here we consider two different one-parameter families of qubit-qutrit states ...We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck(OU) noise. Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs. A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters, the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations. In addition, it is observed that the non-Markovian strength(γ/Γ) has a positive impact on the correlations time. For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property. Moreover, its decay can be significantly delayed.展开更多
Quantum correlations measured by quantum discord (QD), measurement-induced distance (MID), and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated. The effects of D...Quantum correlations measured by quantum discord (QD), measurement-induced distance (MID), and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated. The effects of DM interaction and anisotropic on the three correlations are considered. Characteristics of various correlation measures for the two-qubit states are compared. The increasing Dz increases QD, MID and GMQD monotonously while the increasing anisotropy both increases and decreases QD and GMQD. The three quantum correlations are always existent at very high temperature. MID is always larger than QD, but there is no definite ordering between QD and GMQD. PACS numbers: 03.65.Ta, 03.67.Mn展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11772177)。
文摘We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reservoirs coupling regimes,we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD,and enhance the memory effects of the overall environment.And the Hilbert-Schmidt norm GQD(two-norm GQD) is always smaller than the trace norm geometric quantum discord(one-norm GQD).Therefore,the one-norm GQD is a better way to measure the quantum correlation.Finally,we propose an effective strategy to improve GQD by using partially collapsing measurements,and we find that the protection effect is better with the increase of the weak measurement strength.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174024)the State Key Laboratory of Low-Dimensional Quantum Physics(Tsinghua University)(Grant No.KF201407)+1 种基金the Fundamental Research Funds for the Central Universities of Beihang University(Grant No.YWF-14-WLXY-017)Beijing City Youth Talent Plan
文摘Geometric quantum discord(GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system.We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11275131,11305105,and 11271138)Simons Foundation(Grant No.198129)
文摘We consider the geometric global quantum discord (GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum problem which lies at the core of computing the GGQD for arbitrary two-qubit states. Furthermore, formulae of GGQD of arbitrary two-qubit states and some concrete examples are presented.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11074002 and 61275119)the Specialized Research Fund for the Doc-toral Program of Higher Education of China(Grant No.20103401110003)the Personal Development Foundation of Anhui Province,China(Grant No.2008Z018)
文摘In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with stag- gered Dzyaloshinskii-Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit compar- ison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174081,11034002,11134003,11104075,and 60708003)the National Basic Research Program of China(Grant Nos.2011CB921602 and 2012CB821302)the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University,China
文摘We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three quantum correlations and entanglement of the systems is also analyzed numerically. It is found that novel quantum correlation switches called QD, GMQD, and MID respectively can be constructed with the qubits consisting of electric dipoles coupled by the dipole-dipole interaction and oriented along or against the external electric field. Moreover, with the increase of temperature, QD, GMQD, and MID are more robust than entanglement against the thermal environment. It is also found that for each dipole pair of the three- and four-dipole arrangements, the MID is always the largest and the GMQD the smallest.
基金supported by the National Natural Science Foundation of China (Grant Nos.10905024, 11005029, 11104057 and 11204061)the Key Project of Chinese Ministry of Education (Grant No. 211080)+2 种基金the Key Program of the Education Department of Anhui Province (Grant Nos. KJ2011A243, KJ2012A244 and KJ2012A245)the Anhui Provincial Natural Science Foundation (Grant Nos. 11040606M16 and 10040606Q51)the Doctoral Startup Foundation of Hefei Normal University (Grant No. 2011rcjj03)
文摘We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord(GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of entanglement and GMQD. The dynamic evolution of GMQD under two typical kinds of quantum decoherence channels is also investigated. It is shown that there exists a class of initial states for which the GMQD is not destroyed by decoherence in a finite time interval. Furthermore, we establish a factorization law between the initial and final GMQD, which allows us to infer the evolution of entanglement under the influences of the environment.
基金Supported by National Natural Science Foundation of China under Grant No.11005002 and 11475004 New Century Excellent Talent of M.O.E(NCET-11-0937) Sponsoring Program of Excellent Younger Teachers in universities in Henan Province under Grant No.2010GGJS-181
文摘A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin–Meshkov–Glick and Dicke model.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11274132 and 11550110180
文摘We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck(OU) noise. Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs. A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters, the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations. In addition, it is observed that the non-Markovian strength(γ/Γ) has a positive impact on the correlations time. For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property. Moreover, its decay can be significantly delayed.
基金Supported by Chinese Universities Scientific Fund under Grant No.BUPT2011RC070the National Natural Science Foundation of China under Grant No.61178010
文摘Quantum correlations measured by quantum discord (QD), measurement-induced distance (MID), and geometric measure of quantum discord (GMQD) in two-qubit Heisenberg XY spin chain are investigated. The effects of DM interaction and anisotropic on the three correlations are considered. Characteristics of various correlation measures for the two-qubit states are compared. The increasing Dz increases QD, MID and GMQD monotonously while the increasing anisotropy both increases and decreases QD and GMQD. The three quantum correlations are always existent at very high temperature. MID is always larger than QD, but there is no definite ordering between QD and GMQD. PACS numbers: 03.65.Ta, 03.67.Mn