In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimizati...In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.展开更多
Geometric model construction is the basis of infrared image theory simulation. Taking the construction of the geometric model of one building in Harbin as an example, this paper analyzes the theoretical groundings of ...Geometric model construction is the basis of infrared image theory simulation. Taking the construction of the geometric model of one building in Harbin as an example, this paper analyzes the theoretical groundings of simplification and principles of geometric model construction of buildings. It then discusses some particular treatment methods in calculating the radiation transfer coefficient in geometric model construction using the Monte Carlo Method.展开更多
We discuss a new possible construction of the regular heptagon by rhombic bicompasses explained in the text as a new geometric mean of constructions in the spirit of classical constructions in connection with an unmar...We discuss a new possible construction of the regular heptagon by rhombic bicompasses explained in the text as a new geometric mean of constructions in the spirit of classical constructions in connection with an unmarked ruler (straightedge). It avoids the disadvantages of the neusis construction which requires the trisection of an angle and which is not possible in classical way by compasses and ruler. The rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points (arms) on one circle determines the position of the points on the other circle. This means that the positions of all points (arms) on both circles are determined in unique way.展开更多
A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resem...A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.展开更多
Geometric computing is an important tool in design and manufacturing and in arts. Conventionally, geometric computing is taken by algebraic computing. The vivid intuition of objects in visualization is lost in numeric...Geometric computing is an important tool in design and manufacturing and in arts. Conventionally, geometric computing is taken by algebraic computing. The vivid intuition of objects in visualization is lost in numeric functions, which is however very useful to human cognition as well as emotion. In this paper, we proposed a concept and theory of geometric basis (GB) as the solving cell for geometric computing. Each GB represents a basic geometric operation. GB works as both expressing and solving cell just like the concept of basis in linear algebra by which every element of the vector space can be expressed. For 3D problems, with a procedure of a projections reduction, the problem can be reduced to plane and the reduction function can be designed as a GB. A sequence of GB can construct a higher layer GB. Then, by the traversal of tree, a sequence of GB is got and this sequence is just the construction process and also the solution of this geometric problem.展开更多
基金Thanks for the reviewers’comments to improve the paper.This research was supported by the National Nature Science Foundation of China under Grant Nos.61772163,61761136010,61472111,Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LR16F020003,LQ16F020005.
文摘In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.
文摘Geometric model construction is the basis of infrared image theory simulation. Taking the construction of the geometric model of one building in Harbin as an example, this paper analyzes the theoretical groundings of simplification and principles of geometric model construction of buildings. It then discusses some particular treatment methods in calculating the radiation transfer coefficient in geometric model construction using the Monte Carlo Method.
文摘We discuss a new possible construction of the regular heptagon by rhombic bicompasses explained in the text as a new geometric mean of constructions in the spirit of classical constructions in connection with an unmarked ruler (straightedge). It avoids the disadvantages of the neusis construction which requires the trisection of an angle and which is not possible in classical way by compasses and ruler. The rhombic bicompasses allow to draw at once two circles around two fixed points in such correlated way that the position of one of the rotating points (arms) on one circle determines the position of the points on the other circle. This means that the positions of all points (arms) on both circles are determined in unique way.
基金supported by the National Key Basic Research Program of China (Grants No. 50879007 and 50979014)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090041110016)
文摘A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
文摘Geometric computing is an important tool in design and manufacturing and in arts. Conventionally, geometric computing is taken by algebraic computing. The vivid intuition of objects in visualization is lost in numeric functions, which is however very useful to human cognition as well as emotion. In this paper, we proposed a concept and theory of geometric basis (GB) as the solving cell for geometric computing. Each GB represents a basic geometric operation. GB works as both expressing and solving cell just like the concept of basis in linear algebra by which every element of the vector space can be expressed. For 3D problems, with a procedure of a projections reduction, the problem can be reduced to plane and the reduction function can be designed as a GB. A sequence of GB can construct a higher layer GB. Then, by the traversal of tree, a sequence of GB is got and this sequence is just the construction process and also the solution of this geometric problem.