The geometrical structures of the certain class of statistical manifolds are investigated. The geometwhich includes the original geometrical metrics of S.Amari.
Unsupervised feature selection has become an important and challenging problem faced with vast amounts of unlabeled and high-dimension data in machine learning. We propose a novel unsupervised feature selection method...Unsupervised feature selection has become an important and challenging problem faced with vast amounts of unlabeled and high-dimension data in machine learning. We propose a novel unsupervised feature selection method using Structured Self-Representation( SSR) by simultaneously taking into account the selfrepresentation property and local geometrical structure of features. Concretely,according to the inherent selfrepresentation property of features,the most representative features can be selected. Mean while,to obtain more accurate results,we explore local geometrical structure to constrain the representation coefficients to be close to each other if the features are close to each other. Furthermore,an efficient algorithm is presented for optimizing the objective function. Finally,experiments on the synthetic dataset and six benchmark real-world datasets,including biomedical data,letter recognition digit data and face image data,demonstrate the encouraging performance of the proposed algorithm compared with state-of-the-art algorithms.展开更多
The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-3...The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.展开更多
The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carr...The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.展开更多
A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedbac...A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedback gains is given. Moreover, a diffeomorphic structure between the set of stabilizing time-variant state feedback gains and the Cartesian product of positive definite matrix and skew symmetric matrix satisfying certain algebraic conditions is constructed. Furthermore, an immersion and some results about the eigenvalue locations of stable state feedback systems are derived.展开更多
Abstract" Ab initio density functional theory (DFT) was employed to study geometric and electronic structure of MgF2 (110) surface. Three different clean surface models have been considered. The results show that...Abstract" Ab initio density functional theory (DFT) was employed to study geometric and electronic structure of MgF2 (110) surface. Three different clean surface models have been considered. The results show that the surface terminated with one-layer F has the smallest relaxation and the lowest surface energy, which indicates this model is the most energetically favorable structure of MgF2(110) surface. Furthermore, the electronic properties are also discussed from the point of density of states and charge density. Analysis of electronic structure shows that the band gap of the surface is significantly narrowed with respect to the bulk. The electrons of the surface exhibit strong locality and larger effective mass.展开更多
Molecular mechanics, molecular dynamics and semi empirical quantum chemical method have been used to study the geometric and electronic structures of six phosphonate ester as rare earth extractants. The results show ...Molecular mechanics, molecular dynamics and semi empirical quantum chemical method have been used to study the geometric and electronic structures of six phosphonate ester as rare earth extractants. The results show that the phosphorus atom exhibits sp 3 hybridization. The structures of the extractants are determined by the repulsion of the hydrocarbon groups. In the extractants that have two 2 ethyl hexyl groups, one 2 ethyl hexyl extends straight, and the other extends twistily. When the number of oxygen atom decreases, the negative charge of the phosphoryl oxygen atom increases, but the negative charge of oxygen atom and the positive charge of hydrogen of the hydroxyl group decreases, and the energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital(LUMO) increase. The energies of the occupied frontier orbitals are close to each other.展开更多
In view of information geometry,the state space S of thermodynamic parameters is investigated.First a Riemannian metric for S is defined and then the α-geometric structures of S is given.Some of results obtained by o...In view of information geometry,the state space S of thermodynamic parameters is investigated.First a Riemannian metric for S is defined and then the α-geometric structures of S is given.Some of results obtained by other authors are extended.展开更多
The binding energies of ethylene oxide (Et-O) adsorbed on Cu(110) surface for different adsorption sites and orientations are calculated with an atom superposition and electron delocalization molecular orbital (ASED-M...The binding energies of ethylene oxide (Et-O) adsorbed on Cu(110) surface for different adsorption sites and orientations are calculated with an atom superposition and electron delocalization molecular orbital (ASED-MO) using cluster models. It shows that the top site of Cu(110) surface is preferable for Et-O adsorption and the orientation of C-C bond of Et-O is parallel to the [110] direction of the substratc. The distance of an oxygen of Et-O to the Cu atom is approximately 1.5817(?). It is different from the supposition of C. Benndorf et al., in which the oxygen was proposed on the short bridge site with C-C bond orientating to [110] direction of Cu(110)展开更多
The geometric theory of quasicrystal structure is an important subject in quasicrystal research. The authors deduce the quasicrystal plane geometric lattices from the stereograms of quasicrystal space geometric lattic...The geometric theory of quasicrystal structure is an important subject in quasicrystal research. The authors deduce the quasicrystal plane geometric lattices from the stereograms of quasicrystal space geometric lattice , and put them together to form the geometric lattices of quasicrystal structures . The general characteristics of quasicrystal geometric lattices , the relation between structural models and geometric lattices , and the relation formula (k=0 , 2 , 4 , 6 , 8, 10,12) of the symmetric axis between quasicrystal and crystal are discussed based on the quasicrystal space geometric lattices. This is of significant in quasicrystal research .展开更多
Based on detailed investigations and prospecting,this paper describes the geometrical characteristics and tectonic activities of Wanquan fault in northwest of Beijing. This fault strikes mainly northeast or northeast ...Based on detailed investigations and prospecting,this paper describes the geometrical characteristics and tectonic activities of Wanquan fault in northwest of Beijing. This fault strikes mainly northeast or northeast to north,dipping southeast,and extends over a length of 15km. It is a major geological and geomorphological margin,controlling the neotectonic movement in this region. On the southeast side of Wanquan fault are the Late Quaternary unconsolidated deposits,forming a basin or deposition; but on the other side is Mesozoic volcano debris,forming lower-mountains and hills. Wanquan fault is a mid- to-high-angle normal fault dipping southeast. This fault was more active in the Quaternary. Since the middle-late part of the alate Pleistocene,the average rate with vertical slip of a single fault is over 0. 03 ~ 0. 3mm /a,but the fault has multiple slipping surfaces,and a total rate with vertical slip will be estimated.展开更多
The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the st...The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.展开更多
Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.H...Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.展开更多
The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basi...The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.展开更多
This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes o...This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.展开更多
This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillator...This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six.展开更多
The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the ele...The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.展开更多
The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic prope...The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.展开更多
The adsorption and reaction of formic acid (HCOOH) on clean and atomic oxygen‐covered Au(997) surfaces were studied by temperature‐programmed desorption/reaction spectroscopy (TPRS) and X‐ray photoelectron sp...The adsorption and reaction of formic acid (HCOOH) on clean and atomic oxygen‐covered Au(997) surfaces were studied by temperature‐programmed desorption/reaction spectroscopy (TPRS) and X‐ray photoelectron spectroscopy (XPS). At 105 K, HCOOH molecularly adsorbs on clean Au(997) and interacts more strongly with low‐coordinated Au atoms at (111) step sites than with those at (111) terrace sites. On an atomic oxygen‐covered Au(997) surface, HCOOH reacts with oxygen at‐oms to form HCOO and OH at 105 K. Upon subsequent heating, surface reactions occur among ad‐sorbed HCOO, OH, and atomic oxygen and produce CO2, H2O, and HCOOH between 250 and 400 K. The Au(111) steps bind surface adsorbates more strongly than the Au(111) terraces and exhibit larger barriers for HCOO(a) oxidation reactions. The surface reactions also depend on the relative coverages of co‐existing surface species. Our results elucidate the elementary surface reactions between formic acid and oxygen adatoms on Au surfaces and highlight the effects of the coordina‐tion number of the Au atoms on the Au catalysis.展开更多
Electrochemical water splitting is regarded as the most promising approach to produce hydrogen.However,the sluggish electrochemical reactions occurring at the anode and cathode,namely,the oxygen evolution reaction(OER...Electrochemical water splitting is regarded as the most promising approach to produce hydrogen.However,the sluggish electrochemical reactions occurring at the anode and cathode,namely,the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER),respectively,consume a tremendous amount of energy,seriously hampering its wide application.Recently,single-atom catalysts(SACs)have been proposed to effectively enhance the kinetics of these two reactions.In this minireview,we focus on the recent progress in SACs for OER and HER applications.Three classes of SACs have been reviewed,i.e.,alloy-based SACs,carbon-based SACs and SACs supported on other compounds.Different factors affecting the activities of SACs are also highlighted,including the inherent element property,the coordination environment,the geometric structure and the loading amount of metal atoms.Finally,we summarize the current problems and directions for future development in SACs.展开更多
文摘The geometrical structures of the certain class of statistical manifolds are investigated. The geometwhich includes the original geometrical metrics of S.Amari.
基金Sponsored by the Major Program of National Natural Science Foundation of China(Grant No.13&ZD162)the Applied Basic Research Programs of China National Textile and Apparel Council(Grant No.J201509)
文摘Unsupervised feature selection has become an important and challenging problem faced with vast amounts of unlabeled and high-dimension data in machine learning. We propose a novel unsupervised feature selection method using Structured Self-Representation( SSR) by simultaneously taking into account the selfrepresentation property and local geometrical structure of features. Concretely,according to the inherent selfrepresentation property of features,the most representative features can be selected. Mean while,to obtain more accurate results,we explore local geometrical structure to constrain the representation coefficients to be close to each other if the features are close to each other. Furthermore,an efficient algorithm is presented for optimizing the objective function. Finally,experiments on the synthetic dataset and six benchmark real-world datasets,including biomedical data,letter recognition digit data and face image data,demonstrate the encouraging performance of the proposed algorithm compared with state-of-the-art algorithms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304167 and 51374132)the Postdoctoral Science Foundation of China(Grant No.20110491317)+1 种基金the Young Core Instructor Foundation of Henan Province,China(Grant No.2012GGJS-152)the Natural Science Foundation of Henan Province,China(Grant Nos.132300410209 and 132300410290)
文摘The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.
基金financially supported by the National Key Research and Development Plan(No.2018YFB0605601)the National Natural Science Foundation of China(No.41972168)。
文摘The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.
文摘A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedback gains is given. Moreover, a diffeomorphic structure between the set of stabilizing time-variant state feedback gains and the Cartesian product of positive definite matrix and skew symmetric matrix satisfying certain algebraic conditions is constructed. Furthermore, an immersion and some results about the eigenvalue locations of stable state feedback systems are derived.
基金Founded by the National Natural Science Foundation of China (Nos.5087407, 960976018, 51002102)Youth Foundation of Taiyuan University of Technology (No.2012L037)
文摘Abstract" Ab initio density functional theory (DFT) was employed to study geometric and electronic structure of MgF2 (110) surface. Three different clean surface models have been considered. The results show that the surface terminated with one-layer F has the smallest relaxation and the lowest surface energy, which indicates this model is the most energetically favorable structure of MgF2(110) surface. Furthermore, the electronic properties are also discussed from the point of density of states and charge density. Analysis of electronic structure shows that the band gap of the surface is significantly narrowed with respect to the bulk. The electrons of the surface exhibit strong locality and larger effective mass.
文摘Molecular mechanics, molecular dynamics and semi empirical quantum chemical method have been used to study the geometric and electronic structures of six phosphonate ester as rare earth extractants. The results show that the phosphorus atom exhibits sp 3 hybridization. The structures of the extractants are determined by the repulsion of the hydrocarbon groups. In the extractants that have two 2 ethyl hexyl groups, one 2 ethyl hexyl extends straight, and the other extends twistily. When the number of oxygen atom decreases, the negative charge of the phosphoryl oxygen atom increases, but the negative charge of oxygen atom and the positive charge of hydrogen of the hydroxyl group decreases, and the energies of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital(LUMO) increase. The energies of the occupied frontier orbitals are close to each other.
基金Sponsored by the National Natural Science Foundation of China(10871218,10932002)
文摘In view of information geometry,the state space S of thermodynamic parameters is investigated.First a Riemannian metric for S is defined and then the α-geometric structures of S is given.Some of results obtained by other authors are extended.
文摘The binding energies of ethylene oxide (Et-O) adsorbed on Cu(110) surface for different adsorption sites and orientations are calculated with an atom superposition and electron delocalization molecular orbital (ASED-MO) using cluster models. It shows that the top site of Cu(110) surface is preferable for Et-O adsorption and the orientation of C-C bond of Et-O is parallel to the [110] direction of the substratc. The distance of an oxygen of Et-O to the Cu atom is approximately 1.5817(?). It is different from the supposition of C. Benndorf et al., in which the oxygen was proposed on the short bridge site with C-C bond orientating to [110] direction of Cu(110)
文摘The geometric theory of quasicrystal structure is an important subject in quasicrystal research. The authors deduce the quasicrystal plane geometric lattices from the stereograms of quasicrystal space geometric lattice , and put them together to form the geometric lattices of quasicrystal structures . The general characteristics of quasicrystal geometric lattices , the relation between structural models and geometric lattices , and the relation formula (k=0 , 2 , 4 , 6 , 8, 10,12) of the symmetric axis between quasicrystal and crystal are discussed based on the quasicrystal space geometric lattices. This is of significant in quasicrystal research .
基金Urban Active Faults Detection and Seismic Hazard Assessment Project of the Hebei Province ( funded by the Development and Reform Bureau of the Hebei Province [2007]No.1684)A Special Scientific Research Project in Earthquake Industry ( 200908001)
文摘Based on detailed investigations and prospecting,this paper describes the geometrical characteristics and tectonic activities of Wanquan fault in northwest of Beijing. This fault strikes mainly northeast or northeast to north,dipping southeast,and extends over a length of 15km. It is a major geological and geomorphological margin,controlling the neotectonic movement in this region. On the southeast side of Wanquan fault are the Late Quaternary unconsolidated deposits,forming a basin or deposition; but on the other side is Mesozoic volcano debris,forming lower-mountains and hills. Wanquan fault is a mid- to-high-angle normal fault dipping southeast. This fault was more active in the Quaternary. Since the middle-late part of the alate Pleistocene,the average rate with vertical slip of a single fault is over 0. 03 ~ 0. 3mm /a,but the fault has multiple slipping surfaces,and a total rate with vertical slip will be estimated.
基金financially supported by the National Key Research and Development Program of China (No.2021YFB4001400)。
文摘The reduced sealing difficulty of tubular solid oxide fuel cells(SOFCs)makes the stacking of tubular cell groups relatively easy,and the thermal stress constraints during stack operation are smaller,which helps the stack to operate stably for a long time.The special design of tubular SOFC structures can completely solve the problem of high-temperature sealing,especially in the design of multiple single-cell series integrated into one tube,where each cell tube is equivalent to a small electric stack,with unique characteristics of high voltage and low current output,which can significantly reduce the ohmic polarization loss of tubular cells.This paper provides an overview of typical tubular SOFC structural designs both domestically and internationally.Based on the geometric structure of tubular SOFCs,they can be divided into bamboo tubes,bamboo flat tubes,single-section tubes,and single-section flat tube structures.Meanwhile,this article provides an overview of commonly used materials and preparation methods for tubular SOFCs,including commonly used materials and preparation methods for support and functional layers,as well as a comparison of commonly used preparation methods for microtubule SOFCs,It introduced the three most important parts of building a fuel cell stack:manifold,current collector,and ceramic adhesive,and also provided a detailed introduction to the power generation systems of different tubular SOFCs,Finally,the development prospects of tubular SOFCs were discussed.
基金supported by the National Natural Science Foundation of China(22379100,U21A20312)the Shenzhen Science and Technology Program(Grant No.20231121200418001)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120084)the Key Project of Department of Education of Guangdong Province(2023ZDZX3020)。
文摘Electrochemical co-reduction of nitrate(NO_(3)^(-))and carbon dioxide(CO_(2))has been widely regarded as a promising route to produce urea under ambient conditions,however the yield rate of urea has remained limited.Here,we report an atomically ordered intermetallic pallium-zinc(PdZn)electrocatalyst comprising a high density of PdZn pairs for boosting urea electrosynthesis.It is found that Pd and Zn are responsible for the adsorption and activation of NO_(3)^(-)and CO_(2),respectively,and thus the co-adsorption and co-activation NO_(3)^(-)and CO_(2) are achieved in ordered PdZn pairs.More importantly,the ordered and well-defined PdZn pairs provide a dual-site geometric structure conducive to the key C-N coupling with a low kinetical barrier,as demonstrated on both operando measurements and theoretical calculations.Consequently,the PdZn electrocatalyst displays excellent performance for the co-reduction to generate urea with a maximum urea Faradaic efficiency of 62.78%and a urea yield rate of 1274.42μg mg^(-1) h^(-1),and the latter is 1.5-fold larger than disordered pairs in PdZn alloys.This work paves new pathways to boost urea electrosynthesis via constructing ordered dual-metal pairs.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074295,12304271,and 12104420).
文摘The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.
文摘This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.
文摘This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022)
文摘The geometries of MgnNi2(n = 1 6) clusters are studied by using the hybrid density functional theory (B3LYP) with LANL2DZ basis sets. For the ground-state structures of MgnNi2 clusters, the stabilities and the electronic properties are investigated. The results show that the groundstate structures and symmetries of Mg clusters change greatly due to the Ni atoms. The average binding energies have a growing tendency while the energy gaps have a declining tendency. In addition, the ionization energies exhibit an odd-even oscillation feature. We also conclude that n = 3, 5 are the magic numbers of the MgnNi2 clusters. The Mg3Ni2 and Mg5Ni2 clusters are more stable than neighbouring clusters, and the MgaNi2 cluster exhibits a higher chemical activity.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10676022).
文摘The density functional theory B3PW91 with LANL2DZ basis sets has been used to study the possible geometries of Mg2Nin(n = 1–8) clusters. For the lowest energy structures of the clusters, stabilities, electronic properties, and natural bond orbital(NBO) are calculated and discussed. The results show that the doped Mg atoms reduce the stabilities of pure Ni clusters. The Mg2Ni2, Mg2Ni4, and Mg2Ni6clusters are more stable than neighboring clusters. The system appears magic number characteristics. In addition, the hybridization phenomenon occurs, owing to the interaction of Mg and Ni. The result of charge transfer is that Ni atom is negative and the Mg atom is positive. We also conclude that the 3p and 4d orbitals of the Ni atom have an effect on the stabilities of the clusters.
基金supported by the National Basic Research Program of China (973 Program, 2013CB933104)the National Natural Science Foundation of China (21525313, 20973161, 21373192)+1 种基金the Fundamental Research Funds for the Central Universities (WK2060030017)Collaborative In-novation Center of Suzhou Nano Science and Technology~~
文摘The adsorption and reaction of formic acid (HCOOH) on clean and atomic oxygen‐covered Au(997) surfaces were studied by temperature‐programmed desorption/reaction spectroscopy (TPRS) and X‐ray photoelectron spectroscopy (XPS). At 105 K, HCOOH molecularly adsorbs on clean Au(997) and interacts more strongly with low‐coordinated Au atoms at (111) step sites than with those at (111) terrace sites. On an atomic oxygen‐covered Au(997) surface, HCOOH reacts with oxygen at‐oms to form HCOO and OH at 105 K. Upon subsequent heating, surface reactions occur among ad‐sorbed HCOO, OH, and atomic oxygen and produce CO2, H2O, and HCOOH between 250 and 400 K. The Au(111) steps bind surface adsorbates more strongly than the Au(111) terraces and exhibit larger barriers for HCOO(a) oxidation reactions. The surface reactions also depend on the relative coverages of co‐existing surface species. Our results elucidate the elementary surface reactions between formic acid and oxygen adatoms on Au surfaces and highlight the effects of the coordina‐tion number of the Au atoms on the Au catalysis.
文摘Electrochemical water splitting is regarded as the most promising approach to produce hydrogen.However,the sluggish electrochemical reactions occurring at the anode and cathode,namely,the oxygen evolution reaction(OER)and the hydrogen evolution reaction(HER),respectively,consume a tremendous amount of energy,seriously hampering its wide application.Recently,single-atom catalysts(SACs)have been proposed to effectively enhance the kinetics of these two reactions.In this minireview,we focus on the recent progress in SACs for OER and HER applications.Three classes of SACs have been reviewed,i.e.,alloy-based SACs,carbon-based SACs and SACs supported on other compounds.Different factors affecting the activities of SACs are also highlighted,including the inherent element property,the coordination environment,the geometric structure and the loading amount of metal atoms.Finally,we summarize the current problems and directions for future development in SACs.