During 1960—1990, an extensive geological-geophysical investigation was carried out in the marine areas of China. According to the materials obtained, the 'Geological—Geophysical Serial Maps of the China Seas an...During 1960—1990, an extensive geological-geophysical investigation was carried out in the marine areas of China. According to the materials obtained, the 'Geological—Geophysical Serial Maps of the China Seas and the Adjacent Areas (1:2,000,000)' was compiled. In fact, it is a systematic summary of the geological and geophysical work of the China Seas in the past 30 years.In this paper, the author explains the guiding thought and methodology of the compilation of the serial maps, and then briefly discusses the characteristics of geophysical fields and geodynamics, stratigraphy, tectonics and magmatism.展开更多
It is clarified in this paper that the Lower Yangtze depression is a Meso-Cenozoic rift zone formed on thebasement of the Hercynian-Indosinian foreland basins. The rift zone is divided into eastern and western sectors...It is clarified in this paper that the Lower Yangtze depression is a Meso-Cenozoic rift zone formed on thebasement of the Hercynian-Indosinian foreland basins. The rift zone is divided into eastern and western sectorsand is different in northern and southern parts. The rift zone in plane combination comprises parallel.trifurcate or splitting rifts. The North Jiangsu-South Yellow Sea region represents a 'drift-type' rift basinwhose deposition center migrates gradually castward. The formation mechanism and dynamic evolution of therift basin are discussed from a viewpoint of the crustal fine-structure, with evidence in geology and geophysicsand analysis results of dynamic forces given.展开更多
A magnetotelluric study was carried out in the Xuefeng mountain uplift belt and its western margins. A detailed investigation was made of the resistivity of the formations, and reliable data were obtained. The sedimen...A magnetotelluric study was carried out in the Xuefeng mountain uplift belt and its western margins. A detailed investigation was made of the resistivity of the formations, and reliable data were obtained. The sedimentary cover and basement structure of the Xuefeng mountain area and the deep geological structure were analyzed in detail using magnetotelluric data from the twodimensional inversion of the resistivity profile data in combination with regional gravity and magnetic data. It was concluded that the tectonic movements were characterized by basement detachment, and north-south ramp.The study area can be divided into a southern uplift zone, a southern thrust-faulted zone, a central uplift zone, and a northern depression zone. This work has provided geophysical evidence that can be used in future studies of the tectonics and petroleum geology of this region.展开更多
Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especial...Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especially in the lower exploration deepwater area. In this paper, a new integrative process utilizing geology and geophysics is proposed for better predicting the distribution of coal-bearing source rocks. Coal-beds were identified by the logging responses of“three higher, three lower, and one expand”and carbargilite were recognized by the characteristics of“four higher and one lower”. Based on the above logical decision, coal-beds and carbargilite can be distinguished automatically by cluster analysis of logging curves in verticality. Within the constraints of well-seismic calibration, the coal-beds group also can be detected in horizontality by the integrated representation of“negative phase, higher Q, lower impedance and lower frequency”within the seismic data. However, the distribution of coal-bearing source rocks utilizing geophysical methodology may do not conform to the geological rules of coal accumulation. And then the main geological controlling factors of coal accumulation are comprehensively analyzed as follows:(1) Paleotopography and tectonic subsidence determine the planar range of terrestrial-marine transitional facies markedly;(2) The relative sea level changes affect the accommodation space and shoreline migration, and limit the vertical range of coal-beds. More specifically, the relationship between the accommodation creation rate and the peat accumulation rate is a fundamental control on coal accumulation. The thickest and most widespread coals form where those two factors reached a state of balance;(3) The supply of autochthonous clasts and the distance between deposition places and paleovegetation accumulated area are the critical factor to form abundant coal, which means that if deposition area is close to paleouplift, there would be sufficient organic matters to form abundant source rocks. The results show that the integrated methods can significantly improve prediction accuracy of coal-bearing source rocks, which is suitable for early exploration of western deepwater area of South China Sea.展开更多
On 1–5 September 2014,the China Geological Survey Bureau held a 2015–2020 Geology and Mineral Resources Investigation and Assessment Special Planning and Deployment Meeting to plan the next six years in order to inv...On 1–5 September 2014,the China Geological Survey Bureau held a 2015–2020 Geology and Mineral Resources Investigation and Assessment Special Planning and Deployment Meeting to plan the next six years in order to invest nearly ten billion US dollars to implement 9 programs and 50 projects with the aim of developing geological survey work,and to play a leading role in ensuring sustained and stable development.展开更多
The Geology and Landform of Hoh Xil and Its Evolution This book is edited by Li Jianghai,Wencheng,and Liu Chiheng,and narrates the geology and landform of Hoh Xil.With a large number of photos,this book provides reade...The Geology and Landform of Hoh Xil and Its Evolution This book is edited by Li Jianghai,Wencheng,and Liu Chiheng,and narrates the geology and landform of Hoh Xil.With a large number of photos,this book provides readers with detailed information about topographical features including highland glaciers,lakes,rivers,and plains.Experts apply remote sensing technology,geophysics,and on-site investigations to study Hoh Xil’s structural makeup,model its fractured terrain,and perform a myriad of other analyses.展开更多
The water depth in Nansha(南沙) waters,which is located in the southern South China Sea,varies from 200 to 2 500 m,with a deep-water(500 m) area of 500 000 km2.In this region,there are many depositional basins wit...The water depth in Nansha(南沙) waters,which is located in the southern South China Sea,varies from 200 to 2 500 m,with a deep-water(500 m) area of 500 000 km2.In this region,there are many depositional basins with various structural features,prone to the accumulation of organic material.The temperature and pressure conditions in the deep-water environment are suitable for the preservation of gas hydrate.At several sites,we have recognized bottom-simulating reflectors(BSRs) from seismic data.Regional geology analyses show that the Nansha waters may have abundant gas hy-drate prospects,especially in localities such as the Nansha trough and other deep-water basins of the central Nansha waters.展开更多
Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consi...Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consider and solve. The authors propose a new framework of the multi-source and multi-temporal data-oriented fusion for the characterization of landslide events. The main objective is to generate 3D virtual models(in the form of dense point clouds) and feed them back with the characteristic of soil and subsoil information. The scheme consists of three main steps. The first one is on-site data collection(geological characterization, geophysical measurements, GPS measurements, and UAV/drone mapping). The second step is generation of a high-resolution 3D virtual model(~1-inch spatial resolution) from the frames acquired through the UAV using the structure of motion(SfM) processing;the developed virtual model is optimized with GPS measurements to minimize geolocation error and eliminate distortions. The last step is assembling of the acquired data in the field and densified point cloud considering the different nature of the data, re-escalating procedure and the information stacking layer.展开更多
文摘During 1960—1990, an extensive geological-geophysical investigation was carried out in the marine areas of China. According to the materials obtained, the 'Geological—Geophysical Serial Maps of the China Seas and the Adjacent Areas (1:2,000,000)' was compiled. In fact, it is a systematic summary of the geological and geophysical work of the China Seas in the past 30 years.In this paper, the author explains the guiding thought and methodology of the compilation of the serial maps, and then briefly discusses the characteristics of geophysical fields and geodynamics, stratigraphy, tectonics and magmatism.
文摘It is clarified in this paper that the Lower Yangtze depression is a Meso-Cenozoic rift zone formed on thebasement of the Hercynian-Indosinian foreland basins. The rift zone is divided into eastern and western sectorsand is different in northern and southern parts. The rift zone in plane combination comprises parallel.trifurcate or splitting rifts. The North Jiangsu-South Yellow Sea region represents a 'drift-type' rift basinwhose deposition center migrates gradually castward. The formation mechanism and dynamic evolution of therift basin are discussed from a viewpoint of the crustal fine-structure, with evidence in geology and geophysicsand analysis results of dynamic forces given.
文摘A magnetotelluric study was carried out in the Xuefeng mountain uplift belt and its western margins. A detailed investigation was made of the resistivity of the formations, and reliable data were obtained. The sedimentary cover and basement structure of the Xuefeng mountain area and the deep geological structure were analyzed in detail using magnetotelluric data from the twodimensional inversion of the resistivity profile data in combination with regional gravity and magnetic data. It was concluded that the tectonic movements were characterized by basement detachment, and north-south ramp.The study area can be divided into a southern uplift zone, a southern thrust-faulted zone, a central uplift zone, and a northern depression zone. This work has provided geophysical evidence that can be used in future studies of the tectonics and petroleum geology of this region.
基金The Major National Science and Technology Programs in the "Twelfth Five-Year" Plan period under contract No.2011ZX05025-002-02-02the National Natural Science Foundation of China under contract Nos 41472084,41202074 and 41172123the foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences) of Ministry of Education under contract No.TPR-2013-13
文摘Owing to the fact that the coal-beds are with the characteristics of multi-beds, thin single-bed, rapid lateral changes and deep burial, coal-bearing source rocks are difficult to be identified and predicted, especially in the lower exploration deepwater area. In this paper, a new integrative process utilizing geology and geophysics is proposed for better predicting the distribution of coal-bearing source rocks. Coal-beds were identified by the logging responses of“three higher, three lower, and one expand”and carbargilite were recognized by the characteristics of“four higher and one lower”. Based on the above logical decision, coal-beds and carbargilite can be distinguished automatically by cluster analysis of logging curves in verticality. Within the constraints of well-seismic calibration, the coal-beds group also can be detected in horizontality by the integrated representation of“negative phase, higher Q, lower impedance and lower frequency”within the seismic data. However, the distribution of coal-bearing source rocks utilizing geophysical methodology may do not conform to the geological rules of coal accumulation. And then the main geological controlling factors of coal accumulation are comprehensively analyzed as follows:(1) Paleotopography and tectonic subsidence determine the planar range of terrestrial-marine transitional facies markedly;(2) The relative sea level changes affect the accommodation space and shoreline migration, and limit the vertical range of coal-beds. More specifically, the relationship between the accommodation creation rate and the peat accumulation rate is a fundamental control on coal accumulation. The thickest and most widespread coals form where those two factors reached a state of balance;(3) The supply of autochthonous clasts and the distance between deposition places and paleovegetation accumulated area are the critical factor to form abundant coal, which means that if deposition area is close to paleouplift, there would be sufficient organic matters to form abundant source rocks. The results show that the integrated methods can significantly improve prediction accuracy of coal-bearing source rocks, which is suitable for early exploration of western deepwater area of South China Sea.
文摘On 1–5 September 2014,the China Geological Survey Bureau held a 2015–2020 Geology and Mineral Resources Investigation and Assessment Special Planning and Deployment Meeting to plan the next six years in order to invest nearly ten billion US dollars to implement 9 programs and 50 projects with the aim of developing geological survey work,and to play a leading role in ensuring sustained and stable development.
文摘The Geology and Landform of Hoh Xil and Its Evolution This book is edited by Li Jianghai,Wencheng,and Liu Chiheng,and narrates the geology and landform of Hoh Xil.With a large number of photos,this book provides readers with detailed information about topographical features including highland glaciers,lakes,rivers,and plains.Experts apply remote sensing technology,geophysics,and on-site investigations to study Hoh Xil’s structural makeup,model its fractured terrain,and perform a myriad of other analyses.
基金supported by the National Basic Research Programs of China (973 Programs) (Nos. 2009CB2194 and 2007CB411700)the National Natural Science Fundation of China (Nos. 40976029 and 40676039)+2 种基金the Major Knowledge Innovation Program of Chinese Academy of Sciences (No. kzcx2-yw-203-01)the National Program of Sustaining Science and Technology (No. 2006BAB19B00)the Ministry of Land and Resources, China (Nos. GT-YQ-QQ-2008-1-02 and 2009GYXQ06)
文摘The water depth in Nansha(南沙) waters,which is located in the southern South China Sea,varies from 200 to 2 500 m,with a deep-water(500 m) area of 500 000 km2.In this region,there are many depositional basins with various structural features,prone to the accumulation of organic material.The temperature and pressure conditions in the deep-water environment are suitable for the preservation of gas hydrate.At several sites,we have recognized bottom-simulating reflectors(BSRs) from seismic data.Regional geology analyses show that the Nansha waters may have abundant gas hy-drate prospects,especially in localities such as the Nansha trough and other deep-water basins of the central Nansha waters.
基金supported by the CONACYT Academic Fellowship(No.308896)
文摘Recent monitoring techniques employ multiple sources of information for the characterization of the phenomenon to be studied, being the coupling and adjustment of multi-source data one of the first challenges to consider and solve. The authors propose a new framework of the multi-source and multi-temporal data-oriented fusion for the characterization of landslide events. The main objective is to generate 3D virtual models(in the form of dense point clouds) and feed them back with the characteristic of soil and subsoil information. The scheme consists of three main steps. The first one is on-site data collection(geological characterization, geophysical measurements, GPS measurements, and UAV/drone mapping). The second step is generation of a high-resolution 3D virtual model(~1-inch spatial resolution) from the frames acquired through the UAV using the structure of motion(SfM) processing;the developed virtual model is optimized with GPS measurements to minimize geolocation error and eliminate distortions. The last step is assembling of the acquired data in the field and densified point cloud considering the different nature of the data, re-escalating procedure and the information stacking layer.