The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop...The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.展开更多
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop...In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.展开更多
Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under diffe...Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under different material mass ratios and curing methods(standard curing,water bath curing,and 60℃curing)are evaluated with significantly increased dosage of CMTs.Porosity and unconfined compressive strength tests,X-ray diffraction,field emission scanning electron microscopy,and energy dispersive spectroscopy are used to determine the physical and mechanical properties,microstructure,and mineral composition of geopolymers.Finally,costs and CO 2 emissions of specimens with different material mass ratios during the preparation processes are compared.The results show that during the geopolymerization of low-calcium materials,various geopolymer gels,including calcium silicate,calcium silicoaluminate,and mainly sodium silicoaluminate gels,coexist.The solid waste,cost,and carbon dioxide emission reductions can reach 100%,166.3 yuan/t,and 73.3 kg/t,respectively.Under a curing condition of 60℃,the sample with a CMTs mass fraction of 70%and an FA mass fraction of 30%meets the requirements of porosity,compressive strength.The resource utilization of CMT and FA is realized in a more economical way.展开更多
Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and w...Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80℃ for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na20 decreased. The increased Na20 content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.展开更多
The influence of each factor on the reaction of geopolymers material was investigated by using the orthogonal experimental design method, which got the optimal condition of reaction. Based on this results the performa...The influence of each factor on the reaction of geopolymers material was investigated by using the orthogonal experimental design method, which got the optimal condition of reaction. Based on this results the performances of geopolymers were investigated. The results are as follows: (1) The effect of each factor on the compressive strength of geopolymers was different; (2) For paste the optimal condition of reaction is that the modulus and the concentration of sodium silicate solution are 1.2 and 40%, the calcined temperature and calcined time of kaolin are 800 ℃ and 2 h, and the liquid-solid ratio is 1.25; (3) When the pH value of solution is higher than l, the compressive strength of Geopolymers will not decrease as that in the water; (4) As the calcined temperature of samples were lower than 700 ℃ the heat-resistant of geopolymers was good;(5) Geopolymers is unlikely to react with the active aggregate.展开更多
This work deals with geopolymers based on local Jordanian resources, namely, kaolin and zeoltitic (phillipsite) tuff. The geopolymers were prepared from these two materials by a reaction with an alkali solution at 80o...This work deals with geopolymers based on local Jordanian resources, namely, kaolin and zeoltitic (phillipsite) tuff. The geopolymers were prepared from these two materials by a reaction with an alkali solution at 80oC. The research group of the present work has demonstrated in previous work that addition of zeolitic tuff to kaolin based-geopolymers increases the adsorption capacity toward Cu(II) metal ion compared to zeolite-free geopolymers, while retaining high mechanical strength. The aim of the present work is to extend our work and to study the effect of changing geopolymers components (zeolitic tuff and kaolin) on their adsorption properties toward Cu(II), Ni(II), Zn(II), Cd(II) and Pb(II) metal ions. Both isothermal and kinetic studies revealed that increasing the zeolitic tuff: kaolin ratio improves the adsorption capacity of geopolymer toward metal ions. The adsorption capacity of the geopolymers of 150: 50 zeolites: kaolin content was found to be higher than that of the raw materials themselves. The rate of adsorption of geopolymers was found to be lower than that of raw materials due to kinetic limitations imposed by the formation of geopolymerization network. The selectivity of geopolymers toward adsorption of? metal ions was found to be distinct from raw zeolite and kaolin where the adsorption onto geopolymers was found to be more preferential for small size metal ions (Cu(II), Ni(II), Zn(II)) than for large size metal ions (Pb(II), Cd(II)). The adsorption of Cu(II) and Pb(II) onto geopolymers did not decrease with competition with other metal ions, which indicates cooperative adsorption. The adsorption process of metal ions onto geopolymers was found to be reversible that indicates that metal ions are bound by physical cation exchange to the exchangeable sites of unreacted phillipsite and new amorphous geopolymer sites. Leaching of metal ions from raw kaolin was much more effective than geopolymers and zeolite because of compact structure of geopolymers.展开更多
The influence of KOH concentration (8 and 12 M) and curing conditions as temperature (40℃ and 60℃), time (7 and 28 days) and relative humidity (85% and 95% RH), on compressive strength of metakaolin-based geopolymer...The influence of KOH concentration (8 and 12 M) and curing conditions as temperature (40℃ and 60℃), time (7 and 28 days) and relative humidity (85% and 95% RH), on compressive strength of metakaolin-based geopolymers (MK-based GP) was evaluated. Derived from the experimental design technique, and using a factorial design 2<sup>K</sup> with two replications in the center point, eighteen experiments were conducted. The results reveal that the best performance conditions of geopolymerization to develop a higher compressive strength of 20 MPa are 12 M KOH to 60℃ and 85% RH at 28 curing days. With these conditions, the value of relative humidity of 85%, promotes high strength compact samples, and a maximum of 42 MPa at 90 days. The results of significant, compressive design of GP showed that KOH concentration and curing relative humidity were the most important factors, followed by curing time and temperature. The GP were characterized by XRD, and their evolution on compression strength was followed by SEM.展开更多
The influences of concentration and modulus of sodium silicate solution and curing mode on the phase composition, microstructure and strength development in the geopolymers prepared using Class F fly ash were investig...The influences of concentration and modulus of sodium silicate solution and curing mode on the phase composition, microstructure and strength development in the geopolymers prepared using Class F fly ash were investigated. X-ray diffraction (XRD), Fourier transform infrared spec-troscopy (FTIR) and MAS NMR were utilized. Results show that the compressive strength increases as sodium silicate solution modulus increases, but when modulus exceeds 1.4, the compressive strength decreases, and it decreases markedly while the modulus is greater than 2.0. The compressive strength was improved by the increase of sodium silicate solution concentration. When the concentration is 32%, the compressive strength reaches the maximum, then it reduces as concentration increasing. Elevated temperature can increase the strength of samples that synthesized from sodium silicate solution with 32% concentration and modulus 1.2. Compared to the strength of the sample cured at 50 ℃, the strength of the samples cured at 65 ℃ and 80 ℃ are higher at 1 d and 3 d, but the same at 7 d. At high temperature, prolonged curing time will decrease the strength. Long precuring at room temperature before application of heat is beneficial for strength development, and there is about 50% increase in strength of the samples cured at 1 d precuring and 2 d elevated temperature as compared to the strengths of the samples cured for 3 d at elevated temperatures or cured for 28 d at room temperature. The main product of reaction in the geopolymeric material is amorphous alkali aluminosilicate gel.展开更多
Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescen...Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescence of the resulting geopolymers. The efflorescence of geopolymer binders was inspected and evaluated through leaching tests. The efflorescence deposits on surface of the geopolymer binders were analyzed using XRD and SEM-EDS. The results showed that sodium and calcium cations leached from geopolymer binders reacted with the atmospheric CO2 and formed the crystal deposits, gaylussite and calcite, in the forms of granular and angular crystal particles. The slag addition led to a refinement of the pore structure of fly ash-based geopolymers, but an increment in the concentration of alkali leaching. The crystal deposits gradually developed in the pore volume of the binders, and finally exceeded the capacity of pore volume. The extent of efflorescence on the surface of specimens increased with the slag substitution. The visible efflorescence is therefore a result of available alkalis and pore sizes and volumes. Higher concentration of available alkalis and smaller pores (and volume) will lead to more intensive efflorescence.展开更多
The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment resid...The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.展开更多
A metakaolin(Mk)-based geopolymer cement from Tunisian Mk mixed with different amounts of silica fume(SiO_2/Al_2O_3 molar ratio varying between 3.61 and 4.09) and sodium hydroxide(10M) and without any alkali silicate ...A metakaolin(Mk)-based geopolymer cement from Tunisian Mk mixed with different amounts of silica fume(SiO_2/Al_2O_3 molar ratio varying between 3.61 and 4.09) and sodium hydroxide(10M) and without any alkali silicate solution, is developed in this work. After the samples were cured at room temperature under air for 28 d, they were analyzed by X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, environmental scanning electron microscopy, mercury intrusion porosimetry, ^(27)Al and ^(29)Si nuclear magnetic resonance(NMR) spectroscopy, and compression testing to establish the relationship between microstructure and compressive strength. The XRD, FTIR, and ^(27)Al and ^(29)Si NMR analyses showed that the use of silica fume instead of alkali silicate solutions was feasible for manufacturing geopolymer cement. The Mk-based geopolymer with a silica fume content of 6 wt%(compared with those with 2% and 10%), corresponding to an SiO_2/Al_2O_3 molar ratio of 3.84, resulted in the highest compressive strength, which was explained on the basis of its high compactness with the smallest porosity. Silica fume improved the compressive strength by filling interstitial voids of the microstructure because of its fine particle size. In addition, an increase in the SiO_2/Al_2O_3 molar ratio, which is controlled by the addition of silica fume, to 4.09 led to a geopolymer with low compressive strength, accompanied by microstructures with high porosity. This high porosity, which is responsible for weaknesses in the specimen, is related to the amount of unreacted silica fume.展开更多
Geopolymer adsorbents were prepared from silica and metakaolin in different Al and Si components and applied for removal of metal ions, Cs+ and Pb2+, from other heavy metal ions mixture. The geopolymer was optimized a...Geopolymer adsorbents were prepared from silica and metakaolin in different Al and Si components and applied for removal of metal ions, Cs+ and Pb2+, from other heavy metal ions mixture. The geopolymer was optimized at Si/Al = 2 as adsorbent, targeting to Cs+ and Pb2+ separation. The binding behavior was well fitted to Langmuir model, which proved that the metakaolin-based geopolymer had multibinding to adsorb ions. The effective adsorption was also observed independent of NaCl concentration for the Cs+ and Pb2+. This meant that the ion adsorption of geopolymers occurred under non-electrostatic mechanism.展开更多
The use of by-products as raw materials in the manufacturing of industrial products has risen in the last years because of environmental considerations.One example is the use of coal ashes from thermalelectrical plant...The use of by-products as raw materials in the manufacturing of industrial products has risen in the last years because of environmental considerations.One example is the use of coal ashes from thermalelectrical plants in the production of geopolymer–a green cement made by mixing aluminosilicate with alkaline activator.In this study,fly and bottom ashes from a thermal-electrical unit were used as sources of aluminosilicate in the synthesis of geopolymers.A mixture of sodium hydroxide(10 mol/L)and sodium silicate(SiO_(2)/Na_(2)O ratio of 2.2)was used as the alkaline activator.The type(fly or bottom ash)and content of the ash were the variables in the synthesis.The ashes were characterized by X-ray fluorescence(XRF),X-ray diffraction(DRX),particle size distribution(PSD),specific surface area(BET),and thermal analysis(DTA/TGA).The ash-based geopolymer samples were measured to obtain their compressive strength after curing.The evolution of the geopolymerization process was also assessed based on final alkali concentration measurements.The results show that it is possible to obtain geopolymers using coal ashes as raw materials with high solid content.The compressive strength for the bottom ash geopolymer after 90 days of curing is 35 MPa.The low concentration of unreacted alkalis after curing(1.5×10^(-3)e 3.5×10^(-3)M)corresponds to high efficiency of the geopolymerization reaction.展开更多
Large deposits of impure kaolins exist in Jordan and many parts of the world;geoplymers can reduce environmental impacts and have multi-application in many fields, such as water purification, waste treatment, fire pro...Large deposits of impure kaolins exist in Jordan and many parts of the world;geoplymers can reduce environmental impacts and have multi-application in many fields, such as water purification, waste treatment, fire proof construction, etc. The aim of this research is to investigate the use of alkali activated zeolitic tuff and low purity metakaolin as precursors for the production of functional geoplymers exhibiting proper mechanical properties and high potential for water storage and decontamination of polluted solutions. The results confirmed that this type of geopolymers showed superior mechanical characteristics and higher adsorption capacity towards heavy metals such as Cu(II) ions, which was similar to natural zeolite. X-ray diffraction analysis showed that phillipsite, a major zeolite mineral, disappeared upon geopolymerization, while scanning electron microscopy analysis showed that geopolymers exhibit a porous matrix of nano-particles. The geopolymers have also displayed high compressive strength and tensile bending strength of about 7.8 MPa and 45 MPa respectively, compared to reference geopolymers. This functional-geopolymers indicate that they are efficient, cost effective and have a potential for number of applications including construction, water storage and wastewater treatment.展开更多
Geopolymer materials today represent innovative products,used frequently as a substitute for cementitious traditional materials.They are obtained by the action of an alkaline activation solution(composed of mainly of ...Geopolymer materials today represent innovative products,used frequently as a substitute for cementitious traditional materials.They are obtained by the action of an alkaline activation solution(composed of mainly of silicon dioxide(SiO2)and sodium hydroxide(NaOH)and water)on a powder natural or synthetic aluminosilicates.In this work,we seek to highlight the effect of the percentage of sodium dioxide firstly,on the evolution of the viscosity of the alkali-activated solution and secondly,on the evolution of the viscosity of geopolymeric solution.Another aspect of this work is the determination of the effect of this percentage on the kinetics that characterize the start of the percolation phenomenon(transition from the fresh state to the hardened state).At last result concerns the impact of temperature on this transition.This contribution consolidates the control protocols for the formulation of geopolymers and allows the optimization of the processes of their exploitation.展开更多
The effect of the amorphous silica derived from biomass rice husk (RH) in the alkaline activating solution on the properties was investigated in geopolymerization process, when metakaolin was used as the aluminum sour...The effect of the amorphous silica derived from biomass rice husk (RH) in the alkaline activating solution on the properties was investigated in geopolymerization process, when metakaolin was used as the aluminum source from metakaolin (MK). With changing a molar ratio of SiO2/Al2O3 = 3.0 and 10, the curing in the preparation of geopolymers was carried out at 85°C, 100°C and 200°C. Viscoelastic properties of the geopolymer pastes including SiO2 and Al2O3 components suggested that the alkaline activation was found in higher RH silica source. The mineralogical and microstructural characteristics of the cured products were evaluated to be amorphous aluminosilicate.展开更多
High cost has been pointed among factors that limit the promotion of geopolymers. To contribute to the reduction of the use of costly industrial sodium silicate in activators for geopolymers, a gel obtained with RHA a...High cost has been pointed among factors that limit the promotion of geopolymers. To contribute to the reduction of the use of costly industrial sodium silicate in activators for geopolymers, a gel obtained with RHA and concentrated sodium hydroxide was used in the present study to develop an alkaline activator with 8 M NaOH and to produce geopolymers with crushed fired clay bricks wastes (FCBW). Characteristics of the gel were compared to that of commercial sodium silicate which was also mixed with 8 M NaOH in the ratio 1:1 to produce geopolymers. Chemical and mineralogical analyses were done on raw materials. Fourier Transformed Infrared Spectroscopy (FTIR) was done on the gel, commercial sodium silicate and products. Biaxial four point flexural strength, bulk density, water absorption and scanning electron microscopy (SEM) tests were also done on products. Results showed that RHA-NaOH alkaline activator has good potential in consolidating FCBW powder through geopolymerization process which gave products that had characteristics not far from that when the commercial sodium silicate was used. The gel obtained by mixing RHA and NaOH can contribute to the reduction of the use of costly commercial sodium silicate in the production process of geopolymers. However, appropriate filtration process is needed for the RHA-NaOH gel to reduce its impurities as undissolved entities, which will consequently contribute to improve the flexural strength, the density and the microstructure of its products which were low compared to when commercial sodium silicate was used.展开更多
Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC...Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized.展开更多
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP re...This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.展开更多
基金Project(202202AG050010)supported by the Yunnan Major Scientific and Technological Projects,ChinaProject(202103AA080007)supported by the Key R&D Project of Science and Technology Department of Yunnan Province,ChinaProject(NECP2023-06)supported by the Open Project Fund of National Engineering and Technology Research Center for Development&Utilization of Phosphorous Resources,China。
文摘The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.
基金This study was supported by MatSoil Company(Grant No.04G/2022)This research was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie(Grant No.778120).
文摘In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.
基金The National Natural Science Foundation of China(No.41877240)Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1930).
文摘Considering that copper mine tailings(CMTs)are commonly mixed with ordinary Portland cement,fly ash(FA),and kaolin to produce geopolymers,to make full use of CMTs,the properties of geopolymers manufactured under different material mass ratios and curing methods(standard curing,water bath curing,and 60℃curing)are evaluated with significantly increased dosage of CMTs.Porosity and unconfined compressive strength tests,X-ray diffraction,field emission scanning electron microscopy,and energy dispersive spectroscopy are used to determine the physical and mechanical properties,microstructure,and mineral composition of geopolymers.Finally,costs and CO 2 emissions of specimens with different material mass ratios during the preparation processes are compared.The results show that during the geopolymerization of low-calcium materials,various geopolymer gels,including calcium silicate,calcium silicoaluminate,and mainly sodium silicoaluminate gels,coexist.The solid waste,cost,and carbon dioxide emission reductions can reach 100%,166.3 yuan/t,and 73.3 kg/t,respectively.Under a curing condition of 60℃,the sample with a CMTs mass fraction of 70%and an FA mass fraction of 30%meets the requirements of porosity,compressive strength.The resource utilization of CMT and FA is realized in a more economical way.
基金the King Abdulaziz City Science and Technology (KACST) for funding this study through collaboration between KACST-Universiti Malaysia Perlis (UniMAP)
文摘Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80℃ for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na20 decreased. The increased Na20 content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.
基金Funded by Guangzhou Technical Guide Project(No.2004-D038)
文摘The influence of each factor on the reaction of geopolymers material was investigated by using the orthogonal experimental design method, which got the optimal condition of reaction. Based on this results the performances of geopolymers were investigated. The results are as follows: (1) The effect of each factor on the compressive strength of geopolymers was different; (2) For paste the optimal condition of reaction is that the modulus and the concentration of sodium silicate solution are 1.2 and 40%, the calcined temperature and calcined time of kaolin are 800 ℃ and 2 h, and the liquid-solid ratio is 1.25; (3) When the pH value of solution is higher than l, the compressive strength of Geopolymers will not decrease as that in the water; (4) As the calcined temperature of samples were lower than 700 ℃ the heat-resistant of geopolymers was good;(5) Geopolymers is unlikely to react with the active aggregate.
文摘This work deals with geopolymers based on local Jordanian resources, namely, kaolin and zeoltitic (phillipsite) tuff. The geopolymers were prepared from these two materials by a reaction with an alkali solution at 80oC. The research group of the present work has demonstrated in previous work that addition of zeolitic tuff to kaolin based-geopolymers increases the adsorption capacity toward Cu(II) metal ion compared to zeolite-free geopolymers, while retaining high mechanical strength. The aim of the present work is to extend our work and to study the effect of changing geopolymers components (zeolitic tuff and kaolin) on their adsorption properties toward Cu(II), Ni(II), Zn(II), Cd(II) and Pb(II) metal ions. Both isothermal and kinetic studies revealed that increasing the zeolitic tuff: kaolin ratio improves the adsorption capacity of geopolymer toward metal ions. The adsorption capacity of the geopolymers of 150: 50 zeolites: kaolin content was found to be higher than that of the raw materials themselves. The rate of adsorption of geopolymers was found to be lower than that of raw materials due to kinetic limitations imposed by the formation of geopolymerization network. The selectivity of geopolymers toward adsorption of? metal ions was found to be distinct from raw zeolite and kaolin where the adsorption onto geopolymers was found to be more preferential for small size metal ions (Cu(II), Ni(II), Zn(II)) than for large size metal ions (Pb(II), Cd(II)). The adsorption of Cu(II) and Pb(II) onto geopolymers did not decrease with competition with other metal ions, which indicates cooperative adsorption. The adsorption process of metal ions onto geopolymers was found to be reversible that indicates that metal ions are bound by physical cation exchange to the exchangeable sites of unreacted phillipsite and new amorphous geopolymer sites. Leaching of metal ions from raw kaolin was much more effective than geopolymers and zeolite because of compact structure of geopolymers.
文摘The influence of KOH concentration (8 and 12 M) and curing conditions as temperature (40℃ and 60℃), time (7 and 28 days) and relative humidity (85% and 95% RH), on compressive strength of metakaolin-based geopolymers (MK-based GP) was evaluated. Derived from the experimental design technique, and using a factorial design 2<sup>K</sup> with two replications in the center point, eighteen experiments were conducted. The results reveal that the best performance conditions of geopolymerization to develop a higher compressive strength of 20 MPa are 12 M KOH to 60℃ and 85% RH at 28 curing days. With these conditions, the value of relative humidity of 85%, promotes high strength compact samples, and a maximum of 42 MPa at 90 days. The results of significant, compressive design of GP showed that KOH concentration and curing relative humidity were the most important factors, followed by curing time and temperature. The GP were characterized by XRD, and their evolution on compression strength was followed by SEM.
文摘The influences of concentration and modulus of sodium silicate solution and curing mode on the phase composition, microstructure and strength development in the geopolymers prepared using Class F fly ash were investigated. X-ray diffraction (XRD), Fourier transform infrared spec-troscopy (FTIR) and MAS NMR were utilized. Results show that the compressive strength increases as sodium silicate solution modulus increases, but when modulus exceeds 1.4, the compressive strength decreases, and it decreases markedly while the modulus is greater than 2.0. The compressive strength was improved by the increase of sodium silicate solution concentration. When the concentration is 32%, the compressive strength reaches the maximum, then it reduces as concentration increasing. Elevated temperature can increase the strength of samples that synthesized from sodium silicate solution with 32% concentration and modulus 1.2. Compared to the strength of the sample cured at 50 ℃, the strength of the samples cured at 65 ℃ and 80 ℃ are higher at 1 d and 3 d, but the same at 7 d. At high temperature, prolonged curing time will decrease the strength. Long precuring at room temperature before application of heat is beneficial for strength development, and there is about 50% increase in strength of the samples cured at 1 d precuring and 2 d elevated temperature as compared to the strengths of the samples cured for 3 d at elevated temperatures or cured for 28 d at room temperature. The main product of reaction in the geopolymeric material is amorphous alkali aluminosilicate gel.
基金Funded by the Jiangsu Higher Education Institutions for a project PAPD(Priority Academic Program Development),Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT1146)+1 种基金Graduate Education Innovation Project in Jiangsu Province(No.CXLX13_409)supported by University of Southern Queensland and an ARC-linkage project
文摘Blended fly ash/blast-furnace slag geopolymers are focused on due to their excellent mechanical and chemical resistant properties. We investigated the effect of slag partial substitution for fly ash on the efflorescence of the resulting geopolymers. The efflorescence of geopolymer binders was inspected and evaluated through leaching tests. The efflorescence deposits on surface of the geopolymer binders were analyzed using XRD and SEM-EDS. The results showed that sodium and calcium cations leached from geopolymer binders reacted with the atmospheric CO2 and formed the crystal deposits, gaylussite and calcite, in the forms of granular and angular crystal particles. The slag addition led to a refinement of the pore structure of fly ash-based geopolymers, but an increment in the concentration of alkali leaching. The crystal deposits gradually developed in the pore volume of the binders, and finally exceeded the capacity of pore volume. The extent of efflorescence on the surface of specimens increased with the slag substitution. The visible efflorescence is therefore a result of available alkalis and pore sizes and volumes. Higher concentration of available alkalis and smaller pores (and volume) will lead to more intensive efflorescence.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110072120046)
文摘The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.
文摘A metakaolin(Mk)-based geopolymer cement from Tunisian Mk mixed with different amounts of silica fume(SiO_2/Al_2O_3 molar ratio varying between 3.61 and 4.09) and sodium hydroxide(10M) and without any alkali silicate solution, is developed in this work. After the samples were cured at room temperature under air for 28 d, they were analyzed by X-ray diffraction(XRD), Fourier transform infrared(FTIR) spectroscopy, environmental scanning electron microscopy, mercury intrusion porosimetry, ^(27)Al and ^(29)Si nuclear magnetic resonance(NMR) spectroscopy, and compression testing to establish the relationship between microstructure and compressive strength. The XRD, FTIR, and ^(27)Al and ^(29)Si NMR analyses showed that the use of silica fume instead of alkali silicate solutions was feasible for manufacturing geopolymer cement. The Mk-based geopolymer with a silica fume content of 6 wt%(compared with those with 2% and 10%), corresponding to an SiO_2/Al_2O_3 molar ratio of 3.84, resulted in the highest compressive strength, which was explained on the basis of its high compactness with the smallest porosity. Silica fume improved the compressive strength by filling interstitial voids of the microstructure because of its fine particle size. In addition, an increase in the SiO_2/Al_2O_3 molar ratio, which is controlled by the addition of silica fume, to 4.09 led to a geopolymer with low compressive strength, accompanied by microstructures with high porosity. This high porosity, which is responsible for weaknesses in the specimen, is related to the amount of unreacted silica fume.
文摘Geopolymer adsorbents were prepared from silica and metakaolin in different Al and Si components and applied for removal of metal ions, Cs+ and Pb2+, from other heavy metal ions mixture. The geopolymer was optimized at Si/Al = 2 as adsorbent, targeting to Cs+ and Pb2+ separation. The binding behavior was well fitted to Langmuir model, which proved that the metakaolin-based geopolymer had multibinding to adsorb ions. The effective adsorption was also observed independent of NaCl concentration for the Cs+ and Pb2+. This meant that the ion adsorption of geopolymers occurred under non-electrostatic mechanism.
文摘The use of by-products as raw materials in the manufacturing of industrial products has risen in the last years because of environmental considerations.One example is the use of coal ashes from thermalelectrical plants in the production of geopolymer–a green cement made by mixing aluminosilicate with alkaline activator.In this study,fly and bottom ashes from a thermal-electrical unit were used as sources of aluminosilicate in the synthesis of geopolymers.A mixture of sodium hydroxide(10 mol/L)and sodium silicate(SiO_(2)/Na_(2)O ratio of 2.2)was used as the alkaline activator.The type(fly or bottom ash)and content of the ash were the variables in the synthesis.The ashes were characterized by X-ray fluorescence(XRF),X-ray diffraction(DRX),particle size distribution(PSD),specific surface area(BET),and thermal analysis(DTA/TGA).The ash-based geopolymer samples were measured to obtain their compressive strength after curing.The evolution of the geopolymerization process was also assessed based on final alkali concentration measurements.The results show that it is possible to obtain geopolymers using coal ashes as raw materials with high solid content.The compressive strength for the bottom ash geopolymer after 90 days of curing is 35 MPa.The low concentration of unreacted alkalis after curing(1.5×10^(-3)e 3.5×10^(-3)M)corresponds to high efficiency of the geopolymerization reaction.
文摘Large deposits of impure kaolins exist in Jordan and many parts of the world;geoplymers can reduce environmental impacts and have multi-application in many fields, such as water purification, waste treatment, fire proof construction, etc. The aim of this research is to investigate the use of alkali activated zeolitic tuff and low purity metakaolin as precursors for the production of functional geoplymers exhibiting proper mechanical properties and high potential for water storage and decontamination of polluted solutions. The results confirmed that this type of geopolymers showed superior mechanical characteristics and higher adsorption capacity towards heavy metals such as Cu(II) ions, which was similar to natural zeolite. X-ray diffraction analysis showed that phillipsite, a major zeolite mineral, disappeared upon geopolymerization, while scanning electron microscopy analysis showed that geopolymers exhibit a porous matrix of nano-particles. The geopolymers have also displayed high compressive strength and tensile bending strength of about 7.8 MPa and 45 MPa respectively, compared to reference geopolymers. This functional-geopolymers indicate that they are efficient, cost effective and have a potential for number of applications including construction, water storage and wastewater treatment.
文摘Geopolymer materials today represent innovative products,used frequently as a substitute for cementitious traditional materials.They are obtained by the action of an alkaline activation solution(composed of mainly of silicon dioxide(SiO2)and sodium hydroxide(NaOH)and water)on a powder natural or synthetic aluminosilicates.In this work,we seek to highlight the effect of the percentage of sodium dioxide firstly,on the evolution of the viscosity of the alkali-activated solution and secondly,on the evolution of the viscosity of geopolymeric solution.Another aspect of this work is the determination of the effect of this percentage on the kinetics that characterize the start of the percolation phenomenon(transition from the fresh state to the hardened state).At last result concerns the impact of temperature on this transition.This contribution consolidates the control protocols for the formulation of geopolymers and allows the optimization of the processes of their exploitation.
文摘The effect of the amorphous silica derived from biomass rice husk (RH) in the alkaline activating solution on the properties was investigated in geopolymerization process, when metakaolin was used as the aluminum source from metakaolin (MK). With changing a molar ratio of SiO2/Al2O3 = 3.0 and 10, the curing in the preparation of geopolymers was carried out at 85°C, 100°C and 200°C. Viscoelastic properties of the geopolymer pastes including SiO2 and Al2O3 components suggested that the alkaline activation was found in higher RH silica source. The mineralogical and microstructural characteristics of the cured products were evaluated to be amorphous aluminosilicate.
文摘High cost has been pointed among factors that limit the promotion of geopolymers. To contribute to the reduction of the use of costly industrial sodium silicate in activators for geopolymers, a gel obtained with RHA and concentrated sodium hydroxide was used in the present study to develop an alkaline activator with 8 M NaOH and to produce geopolymers with crushed fired clay bricks wastes (FCBW). Characteristics of the gel were compared to that of commercial sodium silicate which was also mixed with 8 M NaOH in the ratio 1:1 to produce geopolymers. Chemical and mineralogical analyses were done on raw materials. Fourier Transformed Infrared Spectroscopy (FTIR) was done on the gel, commercial sodium silicate and products. Biaxial four point flexural strength, bulk density, water absorption and scanning electron microscopy (SEM) tests were also done on products. Results showed that RHA-NaOH alkaline activator has good potential in consolidating FCBW powder through geopolymerization process which gave products that had characteristics not far from that when the commercial sodium silicate was used. The gel obtained by mixing RHA and NaOH can contribute to the reduction of the use of costly commercial sodium silicate in the production process of geopolymers. However, appropriate filtration process is needed for the RHA-NaOH gel to reduce its impurities as undissolved entities, which will consequently contribute to improve the flexural strength, the density and the microstructure of its products which were low compared to when commercial sodium silicate was used.
文摘Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized.
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
基金Funded by the National Natural Science Foundation of China(No.52008046)Young Elite Scientists Sponsorship Program from JSAST(No.TJ-2023-024)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2848)。
文摘This study aims to investigate the feasibility of using decoration waste powder(DWP)as a partial replacement for fly ash(FA)in the preparation of geopolymer masonry mortar,and to examine the effect of different DWP replacement rates(0%-40%)on the fresh and mechanical properties of the mortar.The results showed that each group of geopolymer masonry mortar exhibited excellent water retention performance,with a water retention rate of 100%,which was due to the unique geopolymer mortar system and high viscosity of the alkaline activator solution.Compared to the control group,the flowability of the mortar containing lower contents of DWP(10%and 20%)was higher.However,as the DWP replacement rate further increased,the flowability gradually decreased.The DWP could absorb the free water in the reaction system of geopolymer mortar,thereby limiting the occurrence of geopolymerization reaction.The incorporation of DWP in the mortar resulted in a decrease in compressive strength compared to the mortar without DWP.However,even at a replacement rate of 40%,the compressive strength of the mortar still exceeded 15 MPa,which met the requirements of the masonry mortar.It was feasible to use DWP in the geopolymer masonry mortar.Although the addition of DWP caused some performance loss,it did not affect its usability.