By use of geostrophic momentum approximation,the analytical expressions of the wind distribution within the planetary boundary layer and the vertical velocity at the top of the boundary layer are obtained when the dis...By use of geostrophic momentum approximation,the analytical expressions of the wind distribution within the planetary boundary layer and the vertical velocity at the top of the boundary layer are obtained when the distribution of eddy transfer coefficient k is divided into three sections:k_1z(z_0≤z<h_1),k_2(h_1≤z<h_2), and k_3(h_2≤z).The results are in agreement with the observations.In particular,the wind profile in the surface layer(z_0≤z<h_1)coincides with the logarithmic distribution.The maximum angle between winds near the surface and at the bottom of the free atmosphere is only about 30°.This work improves the work of Wu and Blumen(1982)who introduced the geostrophic momentum approximation to the boundary layer.The solutions in barotropic and neutral conditions have been also extended to the baroclinic and stratified atmosphere.展开更多
The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal...The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.展开更多
Based on the classical Ekman theory, a series of intermediate boundary layer models, which retain the nonlinear advective process while discard embellishments, have been proposed with the intention to understand the c...Based on the classical Ekman theory, a series of intermediate boundary layer models, which retain the nonlinear advective process while discard embellishments, have been proposed with the intention to understand the complex nonlinear features of the atmospheric boundary layer and its interaction with the free atmosphere. In this paper, the recent advances in the intermediate boundary-layer dynamic models are reviewed. Several intermediate models such as the boundary-layer models incorporating geostrophic momentum approximation, Ekman momentum approximation, and the weak nonlinear Ekman-layer model are a major theme. With inspection of the theoretical frameworks, the physical meaning and the limitations of each intermediate model axe discussed. It is found that the qualitative descriptions of the nonlinear nature in Ekman layer made by the intermediate models are fairly consistent though the details may be different. As the application of the intermediate models is concerned, the application of the intermediate models to the study of the topographic boundary layer, frontogenesis, low-level frontal structure, and low-level jet are especially summarized in this paper. It is shown that the intermediate boundary-layer models have great potential in illustrating the low-level structures of the weather and climate systems as they are coupled with the free atmospheric models. In addition, the important remaining scientific challenges and a prospectus for future research on the intermediate model are also discussed.展开更多
The motion equation of atmospheric boundary layer with cold front surface under geostrophic momentum approximation is solved and some characteristics of the stream field for the cold front surface in the boundary laye...The motion equation of atmospheric boundary layer with cold front surface under geostrophic momentum approximation is solved and some characteristics of the stream field for the cold front surface in the boundary layer are derived,for example,the slope of the cold front surface increases with the increases of geostrophic vorticity and the temporal tendency of geostrophic wind speed, and also increases with the decrease of the component of thermal wind speed along the motion direction of the front:the stream field above and below the cold front surface in the boundary layer depends on the slope of the front surface,geostrophic wind speed and its temporal and spatial distributions.A common characteristic is that there exist updraft motion above the cold front surface and downdraft motion below it.展开更多
文摘By use of geostrophic momentum approximation,the analytical expressions of the wind distribution within the planetary boundary layer and the vertical velocity at the top of the boundary layer are obtained when the distribution of eddy transfer coefficient k is divided into three sections:k_1z(z_0≤z<h_1),k_2(h_1≤z<h_2), and k_3(h_2≤z).The results are in agreement with the observations.In particular,the wind profile in the surface layer(z_0≤z<h_1)coincides with the logarithmic distribution.The maximum angle between winds near the surface and at the bottom of the free atmosphere is only about 30°.This work improves the work of Wu and Blumen(1982)who introduced the geostrophic momentum approximation to the boundary layer.The solutions in barotropic and neutral conditions have been also extended to the baroclinic and stratified atmosphere.
基金supported jointly by the CAS Programme (Grant No. XDA11010402)the National Basic Research Program of China (Grant Nos. 2010CB950403, 2012CB417203)+1 种基金the National Natural Science Foundation of China (Grant No. 41275088)the Project founded by China Postdoctoral Science Foundation.
文摘The NCEP/NCAR R1 reanalysis data are employed to investigate the impact of forced and inertial instability in the lower troposphere over the Arabian Sea on the onset process of Indian summer monsoon(ISM),and to reveal the important role of zonal advection of zonal geostrophic momentum played in the forced unstable convection.Results show that during the ISM onset the zero absolute vorticity contour(??=0)shifts northward due to the strong cross-equatorial pressure gradient in the lower troposphere over southern Arabian Sea.Thus a region with negative absolute vorticity is generated near the equator in the northern hemisphere,manifesting the evident free inertial instability.When a southerly passes through this region,under the influence of friction a lower convergence that facilitates the convection flourishing at the lower latitudes appears to the north of zero absolute vorticity contour.However,owing to such a traditional inertial instability,the convection is confined near the equator which does not have direct influence on the ISM onset.On the contrary in the region to the north of the zero absolute vorticity contour and to the south of the low pressure center near the surface,although the atmosphere there is inertially stable,the lower westerly jet can develop and bring on the apparent zonal advection of zonal geostrophic momentum.Both theoretical study and diagnosing analysis present that such a zonal advection of geostrophic momentum is closely associated with the zonal asymmetric distribution of meridional land-sea thermal contrast,which induces a convergence center near and further north of the westerly jet in the lower troposphere over the southwestern coast of the Indian Peninsula,providing a favorable lower circulation for the ISM onset.It illustrates that the development of convection over the Arabian Sea in late spring and early summer is not only due to the frictional inertial instability but also strongly affected by the zonal asymmetric distribution of land-sea thermal contrast.Moreover,before the ISM onset due to the eastward development of the South Asian High(SAH)in the upper troposphere,high potential vorticity is transported to the region over the Arabian Sea.Then a local trumpet-shaped stream field is generated to cause the evident upper divergence-pumping effect which favors the ISM onset.When the upper divergence is vertically coupled with the lower convergence resulted from the aforementioned forced unstable convection development near the southwestern coast of Indian Peninsula,the atmospheric baroclinic unstable development is stimulated and the ISM onset is triggered.
基金Supported jointly by the National Key Basic Research and Development Project of China: Research on Theories and Methods of Monitoring and Predicting of Heavy Rainfall hi South China (2004CB418301)the National Natural Science Foundation of China under Grant Nos. 40333025, 40325014, and 40333031
文摘Based on the classical Ekman theory, a series of intermediate boundary layer models, which retain the nonlinear advective process while discard embellishments, have been proposed with the intention to understand the complex nonlinear features of the atmospheric boundary layer and its interaction with the free atmosphere. In this paper, the recent advances in the intermediate boundary-layer dynamic models are reviewed. Several intermediate models such as the boundary-layer models incorporating geostrophic momentum approximation, Ekman momentum approximation, and the weak nonlinear Ekman-layer model are a major theme. With inspection of the theoretical frameworks, the physical meaning and the limitations of each intermediate model axe discussed. It is found that the qualitative descriptions of the nonlinear nature in Ekman layer made by the intermediate models are fairly consistent though the details may be different. As the application of the intermediate models is concerned, the application of the intermediate models to the study of the topographic boundary layer, frontogenesis, low-level frontal structure, and low-level jet are especially summarized in this paper. It is shown that the intermediate boundary-layer models have great potential in illustrating the low-level structures of the weather and climate systems as they are coupled with the free atmospheric models. In addition, the important remaining scientific challenges and a prospectus for future research on the intermediate model are also discussed.
基金This work was supported by the National Natural Science Foundation of China(No.49735180).
文摘The motion equation of atmospheric boundary layer with cold front surface under geostrophic momentum approximation is solved and some characteristics of the stream field for the cold front surface in the boundary layer are derived,for example,the slope of the cold front surface increases with the increases of geostrophic vorticity and the temporal tendency of geostrophic wind speed, and also increases with the decrease of the component of thermal wind speed along the motion direction of the front:the stream field above and below the cold front surface in the boundary layer depends on the slope of the front surface,geostrophic wind speed and its temporal and spatial distributions.A common characteristic is that there exist updraft motion above the cold front surface and downdraft motion below it.