Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making cont...Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making contaminated materials as both environmentally and geotechnically suitable construction materials need the employment of remediation techniques.Bioremediation,as an efficient,low cost and environmentalfriendly approach,was used in the case of highly plastic clayey soils.To better understand the change in geotechnical properties of highly plastic fine-grained soil due to crude oil contamination and bioremediation,Atterberg limits,compaction,unconfined compression,direct shear,and consolidation tests were conducted on natural,contaminated,and bioremediated soil samples to investigate the effects of contamination and remediation on fine-grained soil properties.Oil contamination reduced maximum dry density(MDD),optimum moisture content(OMC),unconfined compressive strength(UCS),shear strength,swelling pressure,and coefficient of consolidation of soil.In addition,contamination increased the compression and swelling indices and compressibility of soil.Bioremediation reduced soil contamination by about 50%.Moreover,in comparison with contaminated soil,bioremediation reduced the MDD,UCS,swelling index,free swelling and swelling pressure of soil,and also increased OMC,shear strength,cohesion,internal friction angle,failure strain,porosity,compression index,and settlement.Microstructural analyses showed that oil contamination does not alter the soil structure in terms of chemical compounds,elements,and constituent minerals.While it decreased the specific surface area of the soil,and the bioremediation significantly increased the mentioned parameters.Bioremediation resulted in the formation of quasi-fibrous textures and porous and agglomerated structures.As a result,oil contamination affected the mechanical properties of soil negatively,but bioremediation improved these properties.展开更多
Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added durin...Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.展开更多
Geotechnical data obtained from the polymetallic nodules investigation in 1994, in combi nation with the historical data concerned, are analyses comprehensively to study sediment types, geotechnical properties, soil ...Geotechnical data obtained from the polymetallic nodules investigation in 1994, in combi nation with the historical data concerned, are analyses comprehensively to study sediment types, geotechnical properties, soil strength and so on, in order to provide bases for design and construction of engineering facilities and the equipments raquired for the polymetallic nodules mining in the future.展开更多
Present study is aimed at assessment of geotechnical properties of Laki limestone as coarse aggregate which is being quarried in Nooriabad area,Sindh,Pakistan.Coarse aggregate samples(n=20)of limestone were collected ...Present study is aimed at assessment of geotechnical properties of Laki limestone as coarse aggregate which is being quarried in Nooriabad area,Sindh,Pakistan.Coarse aggregate samples(n=20)of limestone were collected for the evaluation of physico-mechanical properties of the aggregate.Petrographic analysis revealed that the aggregate comprises of hard,compact,massive,crystalline and fossiliferous limestone.It is devoid of any reactive silica(chert,chalcedony)and other harmful constituents like clays or organic matter.Average values of specific gravity,absorption,bulk density,void content and combined index(EI+FI)of collected samples are 2.5,2.1%,1.54 g/cc,38.55%and 13.04%respectively.The values of specific gravity(2.3-2.9),absorption(0-8%),bulk density(1.28 g/cc-1.92 g/cc)and void content(30%-45%)are varying within the range of normal weight aggregate as per American concrete institute(ACI)specifications.On the other hand,absorption values of aggregate samples are slightly higher(2.1%)than the reference range(2%)but meet other requirements.Mechanical properties including aggregate impact value(8.58%),aggregate crushing value(26.66%),Loss Angeles abrasion value(24.77%),sodium sulfate soundness(4.72%),water soluble sulfate(0.006%)and water soluble chloride(0.005%)are found to be within corresponding guidelines set by ASTM.On the other hand,average carbonate content is found to be 89.64%indicating that Laki limestone is of slightly low purity.Except absorption,all physical and mechanical properties lie within specified ranges.It is concluded that Laki limestone is suitable for use as road aggregate and concrete mix design.展开更多
This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose...This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose the dielectric permittivity as a third compaction parameter allowing to obtain a non destructive control méthod. Preliminary studies on Diack laterite had shown a good correlation. Additional investigations are carried out to verify the possibility of generalizing this correlation to three new laterite careers: Ngoudiane, Yéba and Fandene. To proceed, particle size analysis, Atterberg limits, specific weight tests and compaction according to the modified Proctor test were performed on laterite samples. Using the radar method, experimental permittivities are determined for laterite samples by the point method of propagation times and confirmed by the diffraction hyperbole method. The geotechnical and radar data obtained allowed correlations between permittivity and water content on the one hand and between permittivity and dry density on the other. The results show that the maximum dry density as a function of permittivity corresponds with the optimum Proctor, which confirms the results previously obtained on Diack laterite.展开更多
The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, ...The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, which is widely used worldwide. Here, we propose stabilizing clay with coconut fiber as a solution to enhance its mechanical properties. To do this, we used an experimental method, first determining the geotechnical properties of the clay and then its mechanical properties. The geotechnical study using the Proctor Test revealed that the dry density of the clay is γb = 1.42 g/cm3, and its water content is W = 22.3%. By applying the rolling method, the Atterberg limits were determined: liquid limit Wl = 63.6, plastic limit Wp = 27.9, plasticity index Ip = 35.7, and consistency index Ic = 1.46. With 25 P = 35.7 1.3, according to the water classification, it falls into class A3ts. The mechanical part focused on compression and flexural strengths obtained using a PROETI hydraulic press. We obtained a flexural strength of 0.63 MPa for simple clay (BA);0.89 MPa for clay + 0.25% fiber (BAF1/4);1.68 MPa for clay + 0.5% fiber (BAF1/2);1.87 MPa for clay + 0.75% fiber (BAF3/4);and 3.91 MPa for clay + 1% fiber (BAF1). As for the compression strength, BA = 5.90 MPa, BAF1/4 = 6.395 MPa, BAF1/2 = 6.292 MPa, BAF3/4 = 6.065 MPa, and BAF1 = 5.423 MPa. The addition of fiber has thus improved the mechanical qualities of the simple clay. These stabilized bricks can be used for sustainable and bioclimatic construction, providing higher durability and good comfort.展开更多
The Bering Sea shelf and Chukchi Sea shelf are believed to hold enormous oil and gas reserves which have attracted a lot of geophysical surveys. For the interpretation of acoustic geophysical survey results, sediment ...The Bering Sea shelf and Chukchi Sea shelf are believed to hold enormous oil and gas reserves which have attracted a lot of geophysical surveys. For the interpretation of acoustic geophysical survey results, sediment sound velocity is one of the main parameters. On seven sediment cores collected from the Bering Sea and Chukchi Sea during the 5th Chinese National Arctic Research Expedition, sound velocity measurements were made at 35, 50, 100, 135, 150, 174, 200, and 250 kHz using eight separate pairs of ultrasonic transducers. The measured sound velocities range from 1 425.1 m/s to 1 606.4 m/s and are dispersive with the degrees of dispersion from 2.2% to 4.0% over a frequency range of 35-250 kHz. After the sound velocity measurements, the measurements of selected geotechnical properties and the Scanning Electron Microscopic observation of microstructure were also made on the sediment cores. The results show that the seafioor sediments are composed of silty sand, sandy silt, coarse silt, clayey silt, sand-silt-clay and silty clay. Aggregate and diatom debris is found in the seafloor sediments. Through comparative analysis of microphotographs and geotechnical properties, it is assumed that the large pore spaces between aggregates and the intraparticulate porosity of diatom debris increase the porosity of the seafioor sediments, and affect other geotechnical properties. The correlation analysis of sound velocity and geotechnical properties shows that the correlation of sound velocity with porosity and wet bulk density is extreme significant, while the correlation of sound velocity with clay content, mean grain size and organic content is not significant. The regression equations between porosity, wet bulk density and sound velocity based on best-fit polynomial are given.展开更多
The most important aspect of every civil engineering project is acquiring reliable information on the ground on which the project will be constructed. This research includes a site investigation, which is seen as a pr...The most important aspect of every civil engineering project is acquiring reliable information on the ground on which the project will be constructed. This research includes a site investigation, which is seen as a primary stage in gathering geological, geotechnical, and other essential engineering data for structures’ safe and cost-effective design. Five boreholes at well-spaced spots were drilled for subsurface investigation at a maximum depth of 15 m to 30 m. The standard penetration tests (SPT) were performed at different depths, soil samples were taken at various intervals, and lithological changes were observed. The friction angle was between 19.6ºand 33.03º, whereas the cohesion ranges between 0.25 kg/cm<sup>2</sup> and 0.42 kg/cm<sup>2</sup>, indicating a strong resistance to shearing and a high capacity to sustain the load. Furthermore, the soil samples’ maximum dry density ranges from 1.63 g/cm<sup>3</sup> to 1.80 g/cm<sup>3</sup>. In addition, water table depths were recorded from 6.0 m to 7.0 m. The net bearing capacity for isolated/pad foundation at a depth of 1.5 m to 2.5 m below the ground level has been calculated as 95.0 to 120.0 kPa and 120.0 to 180.0 kPa for raft foundation. The net allowable pressure settlement limits for isolated/pad and raft foundations are 25 mm (1-inch) and 50 mm (2-inches), respectively. The investigation has found no severe geological flaws on the proposed construction site, and therefore it is appropriate for the construction of an Air Separation Unit (ASU) Oxygen Plant.展开更多
This study aims to the initial characterization of Aptian sedimentary limestones in the Kef region located in the North-West of Tunisia in order to use in industrial fields. The limestone samples were collected from t...This study aims to the initial characterization of Aptian sedimentary limestones in the Kef region located in the North-West of Tunisia in order to use in industrial fields. The limestone samples were collected from three outcrops respectively named Jebel Jerissa, Jebel Hmeima and Jebel Harraba. A geochemical characterization highlights a variation of the weight percentage (wt%) as follows: CaO (53 - 55), MgO (0.04 - 0.28), Al2O3 (0.07 - 0.51), Fe2O3 (0.41 - 2.87), and a loss on ignition (41.62 - 43.35). The other oxides (K2O, SO3, Na2O) are in trace amounts. Mineralogical analysis revealed that limestones contain more than 95% of calcite and the clay impurities are the minor phases detected. Petrographic study showed that these limestones are packestone-wakestone type. The hardness of Aptian limestones crosses the upper limit of the hard domain. Geotechnical tests reveal a Dry Micro Deval (MDS) coefficient varying from 23% to 33%, a Wet Micro Deval (MDH) coefficient with values oscillating around 26% to 36%, a Los Angeles coefficient (LA) about 25% against a value of the compressive strength ranging from 593 Kg/cm2 to 866 Kg/cm2. The gravimetric tests highlighted a flexural strength value from 106 Kg/cm2 at 208 Kg/cm2, while the ultrasonic coefficient oscillates from 4876 m/s to 5233 m/s, indicating the low porosity of these limestone (0.5% to 1%). The density recorded an average value of 2.50 g/cm3. The various properties studied have proved that the limestone studied can be used in various industrial fields such steel industry, aggregate, cement industry and marble.展开更多
This paper presents the evaluation of the potential aggregate source for pavement construction in Pakistan. Recently the demand for construction materials has been increased significantly due to the establishment of t...This paper presents the evaluation of the potential aggregate source for pavement construction in Pakistan. Recently the demand for construction materials has been increased significantly due to the establishment of the China-Pakistan Economic Corridor (CPEC) Projects. Therefore, it is essential to look for new resources of construction materials along with the CPEC routes in consideration of this increasing demand. In this context, a Physical and Mechanical characterization investigation is carried out on the Permian Wargal Limestone from Zaluch Nala, Salt Range to explore their potential to utilize as construction materials. The studied samples have tolerable values for all standard engineering parameters, proposed by various national and international agencies such as AASHTO, ASTM, BS, and NHA. Furthermore, as a performance indicator of aggregate overall quality, the evaluated mechanical qualities were integrated into a single characteristic, Toughness Index (TI). The TI values also suggested that the Permian Wargal limestone aggregates meet international quality standards for pavement construction. On the basis of geotechnical testing and Toughness Index (TI), the late Permian Wargal limestone, Zaluch Nala, Salt Range, is strongly recommended as a potential aggregate resource for mega projects such as the China-Pakistan Economic Corridor (CPEC) and other construction projects.展开更多
The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on...The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash.A series of indices such as unconfined compressive strength,split tensile strength,California bearing ratio(CBR) and pH value was examined.Prior to this,the specimens were cured for 7 d,14 d,and 28 d.The test results depict that the maximum dry density(MDD) decreases and the optimum moisture content(OMC)increases with the addition of cement.The test results also reveal that the cement increases the strength of the mixed specimens.Thus,the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.展开更多
Considering the stochastic spatial variation of geotechnical parameters over the slope, a Stochastic Finite Element Method (SFEM) is established based on the combination of the Shear Strength Reduction (SSR) concept a...Considering the stochastic spatial variation of geotechnical parameters over the slope, a Stochastic Finite Element Method (SFEM) is established based on the combination of the Shear Strength Reduction (SSR) concept and quasi-Monte Carlo simulation. The shear strength reduction FEM is superior to the slice method based on the limit equilibrium theory in many ways, so it will be more powerful to assess the reliability of global slope stability when combined with probability theory. To illustrate the performance of the proposed method, it is applied to an example of simple slope. The results of simulation show that the proposed method is effective to perform the reliability analysis of global slope stability without presupposing a potential slip surface.展开更多
The disposal of MSW (municipal solid waste), in most of Indian cities, is to dump on nearby low laying lands. This investigation aims to characterize MSW and assess compaction characteristics and strength properties...The disposal of MSW (municipal solid waste), in most of Indian cities, is to dump on nearby low laying lands. This investigation aims to characterize MSW and assess compaction characteristics and strength properties of contaminated soils at dumping sites in two cities Chickballapur and Kolar of Karnataka, India. Representative solid wastes from selected wards of the city were collected and analyzed. Substantial release of leachate form the dump yards occurred during past few years and the soil at the dump site experience extensive contamination. The test results of contaminated and uncontaminated soil show increase in optimum moisture content and decrease in maximum dry density. The unconfined compressive strength decreased considerably for soil samples obtained at 0.0 m, 0.5 m and 1.0 m depths below waste dump. At depths greater than 1.5 m, compaction characteristics and unconfined compressive strength closely match with the uncontaminated soil. Little variation in pH value, which makes soil slightly alkaline, was observed. From the study, it is inferred that, this investigation is very significant, as the foundation normally at these depths may be affected by this contamination.展开更多
This study was carried out with a view to appreciate the value of clay, raw materials in eco-construction. To achieve this, we sampled two clay raw materials denoted Aga and Bak and then characterized. The results obt...This study was carried out with a view to appreciate the value of clay, raw materials in eco-construction. To achieve this, we sampled two clay raw materials denoted Aga and Bak and then characterized. The results obtained from geotechnical and mineralogical tests have shown that the clay samples Aga and Bak are fine soils moderately plastic class A soils consisting essentially of quartz with 73.13% and 74.56% respectively for Aga and Bak and clay minerals (kaolinite and illite) with 12.73% kaolinite and 8.55% illite for Aga against 8.31% kaolinite and 13.72% for Bak. Moreover, these samples do not contain swelling clays and contain a sufficient quantity of iron oxides which allows them to be valued in ceramics, in particular in compressed earth bricks (CEB).展开更多
文摘Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making contaminated materials as both environmentally and geotechnically suitable construction materials need the employment of remediation techniques.Bioremediation,as an efficient,low cost and environmentalfriendly approach,was used in the case of highly plastic clayey soils.To better understand the change in geotechnical properties of highly plastic fine-grained soil due to crude oil contamination and bioremediation,Atterberg limits,compaction,unconfined compression,direct shear,and consolidation tests were conducted on natural,contaminated,and bioremediated soil samples to investigate the effects of contamination and remediation on fine-grained soil properties.Oil contamination reduced maximum dry density(MDD),optimum moisture content(OMC),unconfined compressive strength(UCS),shear strength,swelling pressure,and coefficient of consolidation of soil.In addition,contamination increased the compression and swelling indices and compressibility of soil.Bioremediation reduced soil contamination by about 50%.Moreover,in comparison with contaminated soil,bioremediation reduced the MDD,UCS,swelling index,free swelling and swelling pressure of soil,and also increased OMC,shear strength,cohesion,internal friction angle,failure strain,porosity,compression index,and settlement.Microstructural analyses showed that oil contamination does not alter the soil structure in terms of chemical compounds,elements,and constituent minerals.While it decreased the specific surface area of the soil,and the bioremediation significantly increased the mentioned parameters.Bioremediation resulted in the formation of quasi-fibrous textures and porous and agglomerated structures.As a result,oil contamination affected the mechanical properties of soil negatively,but bioremediation improved these properties.
文摘Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.
文摘Geotechnical data obtained from the polymetallic nodules investigation in 1994, in combi nation with the historical data concerned, are analyses comprehensively to study sediment types, geotechnical properties, soil strength and so on, in order to provide bases for design and construction of engineering facilities and the equipments raquired for the polymetallic nodules mining in the future.
文摘Present study is aimed at assessment of geotechnical properties of Laki limestone as coarse aggregate which is being quarried in Nooriabad area,Sindh,Pakistan.Coarse aggregate samples(n=20)of limestone were collected for the evaluation of physico-mechanical properties of the aggregate.Petrographic analysis revealed that the aggregate comprises of hard,compact,massive,crystalline and fossiliferous limestone.It is devoid of any reactive silica(chert,chalcedony)and other harmful constituents like clays or organic matter.Average values of specific gravity,absorption,bulk density,void content and combined index(EI+FI)of collected samples are 2.5,2.1%,1.54 g/cc,38.55%and 13.04%respectively.The values of specific gravity(2.3-2.9),absorption(0-8%),bulk density(1.28 g/cc-1.92 g/cc)and void content(30%-45%)are varying within the range of normal weight aggregate as per American concrete institute(ACI)specifications.On the other hand,absorption values of aggregate samples are slightly higher(2.1%)than the reference range(2%)but meet other requirements.Mechanical properties including aggregate impact value(8.58%),aggregate crushing value(26.66%),Loss Angeles abrasion value(24.77%),sodium sulfate soundness(4.72%),water soluble sulfate(0.006%)and water soluble chloride(0.005%)are found to be within corresponding guidelines set by ASTM.On the other hand,average carbonate content is found to be 89.64%indicating that Laki limestone is of slightly low purity.Except absorption,all physical and mechanical properties lie within specified ranges.It is concluded that Laki limestone is suitable for use as road aggregate and concrete mix design.
文摘This work studies the variability of the relationship between relative permittivity and compaction parameters as a function of certain geotechnical properties for different laterite types. This study allows to purpose the dielectric permittivity as a third compaction parameter allowing to obtain a non destructive control méthod. Preliminary studies on Diack laterite had shown a good correlation. Additional investigations are carried out to verify the possibility of generalizing this correlation to three new laterite careers: Ngoudiane, Yéba and Fandene. To proceed, particle size analysis, Atterberg limits, specific weight tests and compaction according to the modified Proctor test were performed on laterite samples. Using the radar method, experimental permittivities are determined for laterite samples by the point method of propagation times and confirmed by the diffraction hyperbole method. The geotechnical and radar data obtained allowed correlations between permittivity and water content on the one hand and between permittivity and dry density on the other. The results show that the maximum dry density as a function of permittivity corresponds with the optimum Proctor, which confirms the results previously obtained on Diack laterite.
文摘The criticisms regularly formulated towards clay or soil, in general, are its weak mechanical qualities and low water quality. Therefore, it is necessary to find techniques to improve the properties of this material, which is widely used worldwide. Here, we propose stabilizing clay with coconut fiber as a solution to enhance its mechanical properties. To do this, we used an experimental method, first determining the geotechnical properties of the clay and then its mechanical properties. The geotechnical study using the Proctor Test revealed that the dry density of the clay is γb = 1.42 g/cm3, and its water content is W = 22.3%. By applying the rolling method, the Atterberg limits were determined: liquid limit Wl = 63.6, plastic limit Wp = 27.9, plasticity index Ip = 35.7, and consistency index Ic = 1.46. With 25 P = 35.7 1.3, according to the water classification, it falls into class A3ts. The mechanical part focused on compression and flexural strengths obtained using a PROETI hydraulic press. We obtained a flexural strength of 0.63 MPa for simple clay (BA);0.89 MPa for clay + 0.25% fiber (BAF1/4);1.68 MPa for clay + 0.5% fiber (BAF1/2);1.87 MPa for clay + 0.75% fiber (BAF3/4);and 3.91 MPa for clay + 1% fiber (BAF1). As for the compression strength, BA = 5.90 MPa, BAF1/4 = 6.395 MPa, BAF1/2 = 6.292 MPa, BAF3/4 = 6.065 MPa, and BAF1 = 5.423 MPa. The addition of fiber has thus improved the mechanical qualities of the simple clay. These stabilized bricks can be used for sustainable and bioclimatic construction, providing higher durability and good comfort.
基金The Polar Environment Comprehensive Investigation and Assessment Programs of China under contract Nos CHINARE2013-03-03-02,CHINARE2014-03-03-02 and CHINARE2014-04-03-04-02the Fundamental Research Funds for First Institute of Oceanography,State Oceanic Administration of China under contract No.GY0213G05
文摘The Bering Sea shelf and Chukchi Sea shelf are believed to hold enormous oil and gas reserves which have attracted a lot of geophysical surveys. For the interpretation of acoustic geophysical survey results, sediment sound velocity is one of the main parameters. On seven sediment cores collected from the Bering Sea and Chukchi Sea during the 5th Chinese National Arctic Research Expedition, sound velocity measurements were made at 35, 50, 100, 135, 150, 174, 200, and 250 kHz using eight separate pairs of ultrasonic transducers. The measured sound velocities range from 1 425.1 m/s to 1 606.4 m/s and are dispersive with the degrees of dispersion from 2.2% to 4.0% over a frequency range of 35-250 kHz. After the sound velocity measurements, the measurements of selected geotechnical properties and the Scanning Electron Microscopic observation of microstructure were also made on the sediment cores. The results show that the seafioor sediments are composed of silty sand, sandy silt, coarse silt, clayey silt, sand-silt-clay and silty clay. Aggregate and diatom debris is found in the seafloor sediments. Through comparative analysis of microphotographs and geotechnical properties, it is assumed that the large pore spaces between aggregates and the intraparticulate porosity of diatom debris increase the porosity of the seafioor sediments, and affect other geotechnical properties. The correlation analysis of sound velocity and geotechnical properties shows that the correlation of sound velocity with porosity and wet bulk density is extreme significant, while the correlation of sound velocity with clay content, mean grain size and organic content is not significant. The regression equations between porosity, wet bulk density and sound velocity based on best-fit polynomial are given.
文摘The most important aspect of every civil engineering project is acquiring reliable information on the ground on which the project will be constructed. This research includes a site investigation, which is seen as a primary stage in gathering geological, geotechnical, and other essential engineering data for structures’ safe and cost-effective design. Five boreholes at well-spaced spots were drilled for subsurface investigation at a maximum depth of 15 m to 30 m. The standard penetration tests (SPT) were performed at different depths, soil samples were taken at various intervals, and lithological changes were observed. The friction angle was between 19.6ºand 33.03º, whereas the cohesion ranges between 0.25 kg/cm<sup>2</sup> and 0.42 kg/cm<sup>2</sup>, indicating a strong resistance to shearing and a high capacity to sustain the load. Furthermore, the soil samples’ maximum dry density ranges from 1.63 g/cm<sup>3</sup> to 1.80 g/cm<sup>3</sup>. In addition, water table depths were recorded from 6.0 m to 7.0 m. The net bearing capacity for isolated/pad foundation at a depth of 1.5 m to 2.5 m below the ground level has been calculated as 95.0 to 120.0 kPa and 120.0 to 180.0 kPa for raft foundation. The net allowable pressure settlement limits for isolated/pad and raft foundations are 25 mm (1-inch) and 50 mm (2-inches), respectively. The investigation has found no severe geological flaws on the proposed construction site, and therefore it is appropriate for the construction of an Air Separation Unit (ASU) Oxygen Plant.
文摘This study aims to the initial characterization of Aptian sedimentary limestones in the Kef region located in the North-West of Tunisia in order to use in industrial fields. The limestone samples were collected from three outcrops respectively named Jebel Jerissa, Jebel Hmeima and Jebel Harraba. A geochemical characterization highlights a variation of the weight percentage (wt%) as follows: CaO (53 - 55), MgO (0.04 - 0.28), Al2O3 (0.07 - 0.51), Fe2O3 (0.41 - 2.87), and a loss on ignition (41.62 - 43.35). The other oxides (K2O, SO3, Na2O) are in trace amounts. Mineralogical analysis revealed that limestones contain more than 95% of calcite and the clay impurities are the minor phases detected. Petrographic study showed that these limestones are packestone-wakestone type. The hardness of Aptian limestones crosses the upper limit of the hard domain. Geotechnical tests reveal a Dry Micro Deval (MDS) coefficient varying from 23% to 33%, a Wet Micro Deval (MDH) coefficient with values oscillating around 26% to 36%, a Los Angeles coefficient (LA) about 25% against a value of the compressive strength ranging from 593 Kg/cm2 to 866 Kg/cm2. The gravimetric tests highlighted a flexural strength value from 106 Kg/cm2 at 208 Kg/cm2, while the ultrasonic coefficient oscillates from 4876 m/s to 5233 m/s, indicating the low porosity of these limestone (0.5% to 1%). The density recorded an average value of 2.50 g/cm3. The various properties studied have proved that the limestone studied can be used in various industrial fields such steel industry, aggregate, cement industry and marble.
文摘This paper presents the evaluation of the potential aggregate source for pavement construction in Pakistan. Recently the demand for construction materials has been increased significantly due to the establishment of the China-Pakistan Economic Corridor (CPEC) Projects. Therefore, it is essential to look for new resources of construction materials along with the CPEC routes in consideration of this increasing demand. In this context, a Physical and Mechanical characterization investigation is carried out on the Permian Wargal Limestone from Zaluch Nala, Salt Range to explore their potential to utilize as construction materials. The studied samples have tolerable values for all standard engineering parameters, proposed by various national and international agencies such as AASHTO, ASTM, BS, and NHA. Furthermore, as a performance indicator of aggregate overall quality, the evaluated mechanical qualities were integrated into a single characteristic, Toughness Index (TI). The TI values also suggested that the Permian Wargal limestone aggregates meet international quality standards for pavement construction. On the basis of geotechnical testing and Toughness Index (TI), the late Permian Wargal limestone, Zaluch Nala, Salt Range, is strongly recommended as a potential aggregate resource for mega projects such as the China-Pakistan Economic Corridor (CPEC) and other construction projects.
文摘The behavior of soluble salts contained in the municipal solid waste incinerator(MSWI) ash significantly affects the strength development and hardening reaction when stabilized with cement.The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash.A series of indices such as unconfined compressive strength,split tensile strength,California bearing ratio(CBR) and pH value was examined.Prior to this,the specimens were cured for 7 d,14 d,and 28 d.The test results depict that the maximum dry density(MDD) decreases and the optimum moisture content(OMC)increases with the addition of cement.The test results also reveal that the cement increases the strength of the mixed specimens.Thus,the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.
文摘Considering the stochastic spatial variation of geotechnical parameters over the slope, a Stochastic Finite Element Method (SFEM) is established based on the combination of the Shear Strength Reduction (SSR) concept and quasi-Monte Carlo simulation. The shear strength reduction FEM is superior to the slice method based on the limit equilibrium theory in many ways, so it will be more powerful to assess the reliability of global slope stability when combined with probability theory. To illustrate the performance of the proposed method, it is applied to an example of simple slope. The results of simulation show that the proposed method is effective to perform the reliability analysis of global slope stability without presupposing a potential slip surface.
文摘The disposal of MSW (municipal solid waste), in most of Indian cities, is to dump on nearby low laying lands. This investigation aims to characterize MSW and assess compaction characteristics and strength properties of contaminated soils at dumping sites in two cities Chickballapur and Kolar of Karnataka, India. Representative solid wastes from selected wards of the city were collected and analyzed. Substantial release of leachate form the dump yards occurred during past few years and the soil at the dump site experience extensive contamination. The test results of contaminated and uncontaminated soil show increase in optimum moisture content and decrease in maximum dry density. The unconfined compressive strength decreased considerably for soil samples obtained at 0.0 m, 0.5 m and 1.0 m depths below waste dump. At depths greater than 1.5 m, compaction characteristics and unconfined compressive strength closely match with the uncontaminated soil. Little variation in pH value, which makes soil slightly alkaline, was observed. From the study, it is inferred that, this investigation is very significant, as the foundation normally at these depths may be affected by this contamination.
文摘This study was carried out with a view to appreciate the value of clay, raw materials in eco-construction. To achieve this, we sampled two clay raw materials denoted Aga and Bak and then characterized. The results obtained from geotechnical and mineralogical tests have shown that the clay samples Aga and Bak are fine soils moderately plastic class A soils consisting essentially of quartz with 73.13% and 74.56% respectively for Aga and Bak and clay minerals (kaolinite and illite) with 12.73% kaolinite and 8.55% illite for Aga against 8.31% kaolinite and 13.72% for Bak. Moreover, these samples do not contain swelling clays and contain a sufficient quantity of iron oxides which allows them to be valued in ceramics, in particular in compressed earth bricks (CEB).