High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev...High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.展开更多
The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics application...The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics applications,including the development of efficient and low-cost mid-infrared detectors and light sources.However,achieving precise control over the Sn concentration and strain relaxation of the Ge_(1–y)Sn_(y)epilayer,which directly influence its optical and electrical properties,remain a significant challenge.In this research,the effect of strain relaxation on the growth rate of Ge_(1–y)Sn_(y)epilayers,with Sn concentration>11at.%,is investigated.It is successfully demonstrated that the growth rate slows down by~55%due to strain relaxation after passing its critical thickness,which suggests a reduction in the incorporation of Ge into Ge_(1–y)Sn_(y)growing layers.Despite the increase in Sn concentration as a result of the decrease in the growth rate,it has been found that the Sn incorporation rate into Ge_(1–y)Sn_(y)growing layers has also decreased due to strain relaxation.Such valuable insights could offer a foundation for the development of innovative growth techniques aimed at achieving high-quality Ge_(1–y)Sn_(y)epilayers with tuned Sn concentration and strain relaxation.展开更多
To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resul...To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively.展开更多
High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is signif...High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity.Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed.In this work,the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated,which indicates the high-speed performance of photodetectors using the inductive-gainpeaking technique.展开更多
The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model base...The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength.展开更多
Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and d...Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.展开更多
Some organogermanium oligomers with different side groups were synthesized via ligand substitution polymerization from I, l-dioxane complex of germanium dichloride with different organolithium compounds. The oligomers...Some organogermanium oligomers with different side groups were synthesized via ligand substitution polymerization from I, l-dioxane complex of germanium dichloride with different organolithium compounds. The oligomers were isolated through either precipitation from methanol or extraction using toluene with a yield of no less than 50%. The weight average molecular weight (M-w) of the oligomers is ranging from 1.4 x 10(3) to 5.9 x 10(3) depending on the type and alkyl length of the organolithium compounds used.展开更多
The ICP-AES method for the determination of Ge in GdSiGe series alloys was studied.As the three main elements in the alloys,Gd,Si,and Ge differ greatly from each other in chemical properties,it was difficult to pretre...The ICP-AES method for the determination of Ge in GdSiGe series alloys was studied.As the three main elements in the alloys,Gd,Si,and Ge differ greatly from each other in chemical properties,it was difficult to pretreat the sample.Two decomposition methods were compared,and a mixture of HNO3+HF was used to decompose the sample and the effect of the HF amount on the sample decomposition was examined.The adsorption effect of GdF3 on Ge was discussed.Three GdSiGe series alloy samples were analyzed,and the RSDs of this method were in the range of 0.85%~2.66%.展开更多
In recent years,silicon(Si)and germanium(Ge)materials have been considered as promising highperformance anode materials for lithium-ion batteries due to their high theoretical capacities.It is of great importance to d...In recent years,silicon(Si)and germanium(Ge)materials have been considered as promising highperformance anode materials for lithium-ion batteries due to their high theoretical capacities.It is of great importance to design and synthesize micro/nanostructured Si and Ge materials.In this work,we demonstrated that Si,Ge and SiGe micro/nanowires can be continuously synthesized from their oxides precursors through molten salt electrodeposition.The electrochemical synthesis processes have been investigated systematically,and the deposited Si,Ge and SiGe micro/nanowires have been characterized and compared.The results show that the micro/nanostructured Si and Ge materials with tunable morphology can be facilely and continuously produced via molten salt electrodeposition.The electrodeposition process generally includes calcium oxide-assisted dissolution and electrodeposition processes,and the morphologies of the deposited Si and Ge products can be controlled by varying conditions.Si micro/nanowires,Si films,Ge micro/nanowires,and Ge particles can be continuously synthesized in a controlled manner.展开更多
A new process of enriching germanium from coal ash was developed. The processinvolves in mixing the coal ash and ammonium chloride and then roasting the mixture to producegermanium chloride that is then absorbed by di...A new process of enriching germanium from coal ash was developed. The processinvolves in mixing the coal ash and ammonium chloride and then roasting the mixture to producegermanium chloride that is then absorbed by dilute hydrochloric acid and hydrolyzed to germaniumoxide. The germanium recovery reached to 80.2% at the optimum condition: mass ratio of NH_4Cl/coalash is 0.15, roasting temperature 400℃ and roasting time 90 min.展开更多
A process of recovering Ge by chlorinating masting was put forward. GeCl4 was separated and recovered from lignite ash because of its low boiling point. Kinetic analysis indicates that the chlorinating roasting proces...A process of recovering Ge by chlorinating masting was put forward. GeCl4 was separated and recovered from lignite ash because of its low boiling point. Kinetic analysis indicates that the chlorinating roasting process fits with the unreacted-core shrinking model and the reaction rate equation corresponds to 1 - 2a/3 - (1 - a)2/3 = kt. The apparent activation energy Ea is calculated to be 22.36 kJ·mol^-1. The diffusion of product layer serves as the rate-controlling step in this process. When the roasting temperature is 250℃, the roasting time is 60 min, the con- centration of hydrochloric acid is 10 mol/L, and the ratio of liquid to solid is 10 (mHCl/ash = 10), and 90% Ge in lignite ash can be recovered.展开更多
The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements ...The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements and huminite reflectance. It is concluded that the source of Lincang superlarge deposit is mainly the muscovite granite in the west edge of the basin. During sedimentation, Ge (germanium) was leached out and entered the basin. Ge was adsorbed by lower organism and humic substances in water. Lincang lignite underwent three thermal processes: peatification, early diagenesis and hydrothermal transformation. During peatification, Ge was adsorbed or complexed by humic colloids. During early diagenesis, the Ge associated with humic acids was hard to mobilize or transport. Most of Ge entered the structure of huminite while a small amount of Ge was associated with residual humic acids as complex or humate. During hydrothermal transformation, the heated natural water or deep fluid from basement encountered the coal layer within tectonic weak zone. SO 2- 4 was reduced by coal organic matter. Pyrite and calcite formed. Hydrothermal process did not contribute significantly to mineralization.展开更多
Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming proc...Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming process. Germanium is a disperse element in the crust, but sometimes is not rare in magnetite. Germanium in magnetite can be determined by laser ablation ICP-MS due to its low detection limit(0.0X ppm). In this study, we summary the Ge data of magnetite from magmatic deposits, iron formations, skarn deposits, iron oxide copper-gold deposits, and igneous derived hydrothermal deposits. Magnetite from iron formations contains relatively high Ge(up to ~250 ppm), whereas those from all other deposits mostly contains Ge less than 10 ppm, indicating that iron formations can be discriminated from other Fe deposits by Ge contents. Germanium in magmatic/hydrothermal magnetite is controlled by a few factors. Primary magma/fluid composition may be the major control of Ge in magnetite. Higher oxygen fugacity may be beneficial to Ge partition into magnetite. Sulfur fugacity and temperature may have little effect on Ge in magnetite. The enrichment mechanism of Ge in magnetite from iron formations remains unknown due to the complex ore genesis. Germanium along with other elements(Mn, Ni, Ga) and element ratios(Ge/Ga and Ge/Si raios) can distinguish different types of deposits, indicating that Ge can be used as a discriminate factor like Ti and V. Because of the availability of in situ analytical technique like laser ablation ICP-MS, in situ Ge/Si ratio of magnetite can serve as a geochemical tracer and may provide new constraints on the genesis of banded iron formations.展开更多
The extraction separation of germanium from indium raffinate in hydrometallurgical zinc process was discussed. The conditions and mechanism of the extraction with hydroxamic acid HGS98 have been investigated in detail...The extraction separation of germanium from indium raffinate in hydrometallurgical zinc process was discussed. The conditions and mechanism of the extraction with hydroxamic acid HGS98 have been investigated in detail. The results show that u sing 2% (mass fraction) hydroxamic acid HGS98 and 5% D 2EHPA as synergist, germanium is extracted (1 stage) over 99% in 5 min at phase ratio ( V o∶ V a) of 1∶5 from indium raffinate with original acidity. Then, using 2 mol·L -1 NH 4F as strip liquor, the stripping recovery is over 98% in 15 min at phase ratio of 1∶1. This process has the following advantages:easy to operate, high recovery and selectivity, and lower investment cost. It provides a new way to recover rare metal-germanium from metallurgical spent residues.展开更多
This paper reports that the high-K HfO2 gate dielectrics are fabricated on n-germanium substrates by sputtering Hf on Ge and following by a furnace annealing. The impacts of sputtering ambient, annealing ambient and a...This paper reports that the high-K HfO2 gate dielectrics are fabricated on n-germanium substrates by sputtering Hf on Ge and following by a furnace annealing. The impacts of sputtering ambient, annealing ambient and annealing temperature on the electrical properties of high-K HfO2 gate dielectrics on germanium substrates are investigated. Experimental results indicate that high-K HfO2 gate dielectrics on germanium substrates with good electrical characteristics are obtained, the electrical properties of high-K HfO2 gate dielectrics is strongly correlated with sputtering ambient, annealing ambient and annealing temperature.展开更多
The synthesis and in vitro photodynamic anticancer activity of a new photosen- sitizer, tetra(trifluoroethoxy) germanium phthalocyanine (GePcF), were studied. GePcF was characterized by UV-Vis, IR, MS and elementa...The synthesis and in vitro photodynamic anticancer activity of a new photosen- sitizer, tetra(trifluoroethoxy) germanium phthalocyanine (GePcF), were studied. GePcF was characterized by UV-Vis, IR, MS and elemental analysis. The in vitro photodynamic activity of GePcF was studied by MTT. IC50 of GePcF for SW480 cells of human colonic adenocarcinoma and HeLa cells of cervical cancer were 36.53 and 45.78 μmol/L, respectively. GePcF as a photosensitizer may be used to treat cancers due to its photodyrmmic anticancer activity.展开更多
Rare event search experiments are one of the most important topics in the field of fundamental physics,and high-purity germanium(HPGe)detectors with an ultralow radioactive background are frequently used for such expe...Rare event search experiments are one of the most important topics in the field of fundamental physics,and high-purity germanium(HPGe)detectors with an ultralow radioactive background are frequently used for such experiments.However,cosmogenic activation contaminates germanium crystals during transport and storage.In this study,we investigated the movable shielding containers of HPGe crystals using Geant4 and CRY Monte Carlo simulations.The production rates of 68Ge,65Zn,60Co,55Fe,and 3H were obtained individually for different types of cosmic rays.The validity of the simulation was confirmed through a comparison with the available experimental data.Based on this simulation,we found that the interactions induced by neutrons contribute to approximately 90%of the production rate of cosmogenic activation.In addition,by adding an optimized shielding structure,the production rates of cosmogenic radionuclides are reduced by about one order of magnitude.Our results show that it is feasible to use a shielding container to reduce the cosmogenic radioactivity produced during the transport and storage of high-purity germanium on the ground.展开更多
We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional(2D) germanium.The heterostructure is constructed by the intercalation-assisted technique.We first synth...We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional(2D) germanium.The heterostructure is constructed by the intercalation-assisted technique.We first synthesize large-scale,single-crystalline graphene on Ir(111) surface and then intercalate germanium at the interface of graphene and Ir(111).The intercalated germanium forms a well-defined 2D layer with a 2 × 2 superstructure with respect to Ir(111).Theoretical calculations demonstrate that the 2D germanium has a double-layer structure.Raman characterizations show that the 2D germanium effectively weakens the interaction between graphene and Ir substrate, making graphene more like the intrinsic one.Further experiments of low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy(XPS) confirm the formation of large-scale and high-quality graphene/2D-germanium vertical heterostructure.The integration of graphene with a traditional 2D semiconductor provides a platform to explore new physical phenomena in the future.展开更多
High-performance Ge-on-SOI p–i–n waveguide photodetectors with different sizes were fabricated. The performances, in terms of dark-current, photo current responsivity and 3-d B bandwidth, were well studied. A respon...High-performance Ge-on-SOI p–i–n waveguide photodetectors with different sizes were fabricated. The performances, in terms of dark-current, photo current responsivity and 3-d B bandwidth, were well studied. A responsivity of 0.842 A/W at 1550 nm and dark current of 70 n A was measured from this detector at-1 V. The detector with a size of4 μm×10 μm demonstrated an optical band width of 19 GHz at-5 V for 1550 nm. Both the experimental results and the finite-difference time domain simulation show that, when the device size is above a certain threshold, the absorption is not sensitively dependent on such designing parameters as the width and length of the photodetector.展开更多
The thermostability and the interference-resisting property of germanium (Ge) in graphite furnace atomic absorption spectrometry (GF.AAS) were increased remarkably when palladium and lithium nitrates were used as comp...The thermostability and the interference-resisting property of germanium (Ge) in graphite furnace atomic absorption spectrometry (GF.AAS) were increased remarkably when palladium and lithium nitrates were used as complexing matrix modifiers and barium nitrate as supplementary matrix modifier.展开更多
基金supported by the National Natural Science Foundation of China(No.12005017).
文摘High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.
文摘The growth of high-quality germanium tin(Ge_(1–y)Sn_(y))binary alloys on a Si substrate using chemical vapor deposition(CVD)techniques holds immense potential for advancing electronics and optoelectronics applications,including the development of efficient and low-cost mid-infrared detectors and light sources.However,achieving precise control over the Sn concentration and strain relaxation of the Ge_(1–y)Sn_(y)epilayer,which directly influence its optical and electrical properties,remain a significant challenge.In this research,the effect of strain relaxation on the growth rate of Ge_(1–y)Sn_(y)epilayers,with Sn concentration>11at.%,is investigated.It is successfully demonstrated that the growth rate slows down by~55%due to strain relaxation after passing its critical thickness,which suggests a reduction in the incorporation of Ge into Ge_(1–y)Sn_(y)growing layers.Despite the increase in Sn concentration as a result of the decrease in the growth rate,it has been found that the Sn incorporation rate into Ge_(1–y)Sn_(y)growing layers has also decreased due to strain relaxation.Such valuable insights could offer a foundation for the development of innovative growth techniques aimed at achieving high-quality Ge_(1–y)Sn_(y)epilayers with tuned Sn concentration and strain relaxation.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFF0709503,2022YFB1902700,2017YFC0602101)the Key Research and Development Program of Sichuan province(No.2023YFG0347)the Key Research and Development Program of Sichuan province(No.2020ZDZX0007).
文摘To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively.
基金supported by the National Key Research and Development Program of China(2020YFB2206103)National Natural Science Foundation of China(61975196)Youth Innovation Promotion Association Chinese Academy of Sciences(2021111)。
文摘High-performance germanium(Ge)waveguide photodetectors are designed and fabricated utilizing the inductivegain-peaking technique.With the appropriate integrated inductors,the 3-dB bandwidth of photodetectors is significantly improved owing to the inductive-gain-peaking effect without any compromises to the dark current and optical responsivity.Measured 3-dB bandwidth up to 75 GHz is realized and clear open eye diagrams at 64 Gbps are observed.In this work,the relationship between the frequency response and large signal transmission characteristics on the integrated inductors of Ge waveguide photodetectors is investigated,which indicates the high-speed performance of photodetectors using the inductive-gainpeaking technique.
文摘The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of ChinaProject(CXLX11_0359)supported by Research Innovative Projects for Average College Graduate Students of 2011 in Jiangsu Province,China+2 种基金Project(RERU2011010)supported by Open Subject of State Key Laboratory of Rare Earth Resource Utilization,ChinaProject(51201089)supported by the National Natural Science Foundation of ChinaProject(CPSF2012M521064)supported by China Postdoctoral Science Foundation
文摘Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.
基金This project of 29504030 was supported by the National Natural Science Foundation of China
文摘Some organogermanium oligomers with different side groups were synthesized via ligand substitution polymerization from I, l-dioxane complex of germanium dichloride with different organolithium compounds. The oligomers were isolated through either precipitation from methanol or extraction using toluene with a yield of no less than 50%. The weight average molecular weight (M-w) of the oligomers is ranging from 1.4 x 10(3) to 5.9 x 10(3) depending on the type and alkyl length of the organolithium compounds used.
基金Project supported by the New Technology and New Method Item of Ministry of Science and Technology of PRC(2005JG200030)
文摘The ICP-AES method for the determination of Ge in GdSiGe series alloys was studied.As the three main elements in the alloys,Gd,Si,and Ge differ greatly from each other in chemical properties,it was difficult to pretreat the sample.Two decomposition methods were compared,and a mixture of HNO3+HF was used to decompose the sample and the effect of the HF amount on the sample decomposition was examined.The adsorption effect of GdF3 on Ge was discussed.Three GdSiGe series alloy samples were analyzed,and the RSDs of this method were in the range of 0.85%~2.66%.
基金the Shanghai Rising-Star Program(19QA1403600)the National Natural Science Foundation of China(Nos.51974181+2 种基金51574164)the Iron and Steel Joint Research Found of National Natural Science Foundation and China Baowu Steel Group Corporation Limited(U1860203)the authors also thank the CAS Interdisciplinary In novation Team for financial support.
文摘In recent years,silicon(Si)and germanium(Ge)materials have been considered as promising highperformance anode materials for lithium-ion batteries due to their high theoretical capacities.It is of great importance to design and synthesize micro/nanostructured Si and Ge materials.In this work,we demonstrated that Si,Ge and SiGe micro/nanowires can be continuously synthesized from their oxides precursors through molten salt electrodeposition.The electrochemical synthesis processes have been investigated systematically,and the deposited Si,Ge and SiGe micro/nanowires have been characterized and compared.The results show that the micro/nanostructured Si and Ge materials with tunable morphology can be facilely and continuously produced via molten salt electrodeposition.The electrodeposition process generally includes calcium oxide-assisted dissolution and electrodeposition processes,and the morphologies of the deposited Si and Ge products can be controlled by varying conditions.Si micro/nanowires,Si films,Ge micro/nanowires,and Ge particles can be continuously synthesized in a controlled manner.
基金This project is financially supported by the National Nature Science Foundation of China (No. 59804004) and (No.50274046)
文摘A new process of enriching germanium from coal ash was developed. The processinvolves in mixing the coal ash and ammonium chloride and then roasting the mixture to producegermanium chloride that is then absorbed by dilute hydrochloric acid and hydrolyzed to germaniumoxide. The germanium recovery reached to 80.2% at the optimum condition: mass ratio of NH_4Cl/coalash is 0.15, roasting temperature 400℃ and roasting time 90 min.
文摘A process of recovering Ge by chlorinating masting was put forward. GeCl4 was separated and recovered from lignite ash because of its low boiling point. Kinetic analysis indicates that the chlorinating roasting process fits with the unreacted-core shrinking model and the reaction rate equation corresponds to 1 - 2a/3 - (1 - a)2/3 = kt. The apparent activation energy Ea is calculated to be 22.36 kJ·mol^-1. The diffusion of product layer serves as the rate-controlling step in this process. When the roasting temperature is 250℃, the roasting time is 60 min, the con- centration of hydrochloric acid is 10 mol/L, and the ratio of liquid to solid is 10 (mHCl/ash = 10), and 90% Ge in lignite ash can be recovered.
文摘The mineralization is related closely to sedimentation, diagenesis and hydrothermal processes. In this paper, investigations are carried out on coal occurrence, maceral composition, inorganic minerals, trace elements and huminite reflectance. It is concluded that the source of Lincang superlarge deposit is mainly the muscovite granite in the west edge of the basin. During sedimentation, Ge (germanium) was leached out and entered the basin. Ge was adsorbed by lower organism and humic substances in water. Lincang lignite underwent three thermal processes: peatification, early diagenesis and hydrothermal transformation. During peatification, Ge was adsorbed or complexed by humic colloids. During early diagenesis, the Ge associated with humic acids was hard to mobilize or transport. Most of Ge entered the structure of huminite while a small amount of Ge was associated with residual humic acids as complex or humate. During hydrothermal transformation, the heated natural water or deep fluid from basement encountered the coal layer within tectonic weak zone. SO 2- 4 was reduced by coal organic matter. Pyrite and calcite formed. Hydrothermal process did not contribute significantly to mineralization.
基金funded by CAS“Light of West China”Program to YMMthe Key project of the National Natural Science Foundation of China(41230316)+3 种基金National Natural Science Foundation of China(41503039)the“CAS Hundred Talents”Project to JFG(Y5CJ038000)Research Initial Funding(Y4KJA20001 and Y5KJA20001)Independent Topics Fund(Y4CJ009000)of the Institute of Geochemistry,Chinese Academy of Sciences
文摘Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming process. Germanium is a disperse element in the crust, but sometimes is not rare in magnetite. Germanium in magnetite can be determined by laser ablation ICP-MS due to its low detection limit(0.0X ppm). In this study, we summary the Ge data of magnetite from magmatic deposits, iron formations, skarn deposits, iron oxide copper-gold deposits, and igneous derived hydrothermal deposits. Magnetite from iron formations contains relatively high Ge(up to ~250 ppm), whereas those from all other deposits mostly contains Ge less than 10 ppm, indicating that iron formations can be discriminated from other Fe deposits by Ge contents. Germanium in magmatic/hydrothermal magnetite is controlled by a few factors. Primary magma/fluid composition may be the major control of Ge in magnetite. Higher oxygen fugacity may be beneficial to Ge partition into magnetite. Sulfur fugacity and temperature may have little effect on Ge in magnetite. The enrichment mechanism of Ge in magnetite from iron formations remains unknown due to the complex ore genesis. Germanium along with other elements(Mn, Ni, Ga) and element ratios(Ge/Ga and Ge/Si raios) can distinguish different types of deposits, indicating that Ge can be used as a discriminate factor like Ti and V. Because of the availability of in situ analytical technique like laser ablation ICP-MS, in situ Ge/Si ratio of magnetite can serve as a geochemical tracer and may provide new constraints on the genesis of banded iron formations.
文摘The extraction separation of germanium from indium raffinate in hydrometallurgical zinc process was discussed. The conditions and mechanism of the extraction with hydroxamic acid HGS98 have been investigated in detail. The results show that u sing 2% (mass fraction) hydroxamic acid HGS98 and 5% D 2EHPA as synergist, germanium is extracted (1 stage) over 99% in 5 min at phase ratio ( V o∶ V a) of 1∶5 from indium raffinate with original acidity. Then, using 2 mol·L -1 NH 4F as strip liquor, the stripping recovery is over 98% in 15 min at phase ratio of 1∶1. This process has the following advantages:easy to operate, high recovery and selectivity, and lower investment cost. It provides a new way to recover rare metal-germanium from metallurgical spent residues.
基金Project supported by the National Natural Science Foundation of China (Grant No 90307006), by the National High Tech. Development Program of China (Grant No 2003AA1Z1370), and by the State Key Development Program for Basic Research of China (Grant No G2000036500).
文摘This paper reports that the high-K HfO2 gate dielectrics are fabricated on n-germanium substrates by sputtering Hf on Ge and following by a furnace annealing. The impacts of sputtering ambient, annealing ambient and annealing temperature on the electrical properties of high-K HfO2 gate dielectrics on germanium substrates are investigated. Experimental results indicate that high-K HfO2 gate dielectrics on germanium substrates with good electrical characteristics are obtained, the electrical properties of high-K HfO2 gate dielectrics is strongly correlated with sputtering ambient, annealing ambient and annealing temperature.
基金Supported by the Natural Science Foundation of Fujian Province(2012J01368)
文摘The synthesis and in vitro photodynamic anticancer activity of a new photosen- sitizer, tetra(trifluoroethoxy) germanium phthalocyanine (GePcF), were studied. GePcF was characterized by UV-Vis, IR, MS and elemental analysis. The in vitro photodynamic activity of GePcF was studied by MTT. IC50 of GePcF for SW480 cells of human colonic adenocarcinoma and HeLa cells of cervical cancer were 36.53 and 45.78 μmol/L, respectively. GePcF as a photosensitizer may be used to treat cancers due to its photodyrmmic anticancer activity.
基金supported by the National Key Research and Development Program of China(No.2017YFA0402203)the National Natural Science Foundation of China(No.11975162)the Fundamental Research Funds for Central Universities(No.20822041C4030)。
文摘Rare event search experiments are one of the most important topics in the field of fundamental physics,and high-purity germanium(HPGe)detectors with an ultralow radioactive background are frequently used for such experiments.However,cosmogenic activation contaminates germanium crystals during transport and storage.In this study,we investigated the movable shielding containers of HPGe crystals using Geant4 and CRY Monte Carlo simulations.The production rates of 68Ge,65Zn,60Co,55Fe,and 3H were obtained individually for different types of cosmic rays.The validity of the simulation was confirmed through a comparison with the available experimental data.Based on this simulation,we found that the interactions induced by neutrons contribute to approximately 90%of the production rate of cosmogenic activation.In addition,by adding an optimized shielding structure,the production rates of cosmogenic radionuclides are reduced by about one order of magnitude.Our results show that it is feasible to use a shielding container to reduce the cosmogenic radioactivity produced during the transport and storage of high-purity germanium on the ground.
基金Project supported by the National Key Research&Development Program of China(Grant Nos.2016YFA0202300 and 2018YFA0305800)the National Natural Science Foundation of China(Grant Nos.61390501,61888102,and 51872284)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB30000000 and XDB28000000)Beijing Nova Program,China(Grant No.Z181100006218023)the University of Chinese Academy of Sciences
文摘We report a large-scale, high-quality heterostructure composed of vertically-stacked graphene and two-dimensional(2D) germanium.The heterostructure is constructed by the intercalation-assisted technique.We first synthesize large-scale,single-crystalline graphene on Ir(111) surface and then intercalate germanium at the interface of graphene and Ir(111).The intercalated germanium forms a well-defined 2D layer with a 2 × 2 superstructure with respect to Ir(111).Theoretical calculations demonstrate that the 2D germanium has a double-layer structure.Raman characterizations show that the 2D germanium effectively weakens the interaction between graphene and Ir substrate, making graphene more like the intrinsic one.Further experiments of low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy(XPS) confirm the formation of large-scale and high-quality graphene/2D-germanium vertical heterostructure.The integration of graphene with a traditional 2D semiconductor provides a platform to explore new physical phenomena in the future.
文摘High-performance Ge-on-SOI p–i–n waveguide photodetectors with different sizes were fabricated. The performances, in terms of dark-current, photo current responsivity and 3-d B bandwidth, were well studied. A responsivity of 0.842 A/W at 1550 nm and dark current of 70 n A was measured from this detector at-1 V. The detector with a size of4 μm×10 μm demonstrated an optical band width of 19 GHz at-5 V for 1550 nm. Both the experimental results and the finite-difference time domain simulation show that, when the device size is above a certain threshold, the absorption is not sensitively dependent on such designing parameters as the width and length of the photodetector.
文摘The thermostability and the interference-resisting property of germanium (Ge) in graphite furnace atomic absorption spectrometry (GF.AAS) were increased remarkably when palladium and lithium nitrates were used as complexing matrix modifiers and barium nitrate as supplementary matrix modifier.