期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测
1
作者 梁礼明 龙鹏威 +1 位作者 冯耀 卢宝贺 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1227-1240,共14页
针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重... 针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重坐标注意力机制,提升模型对空间和通道信息的特征提取能力;三是引入鬼影混洗卷积,在提高精度的同时降低模型参数量和计算量;四是增加大目标检测层,改善特征图中部分缺陷占比较大,导致检测精度低的问题。在NEU-DET和Severstal钢材缺陷数据集进行实验验证,改进后算法与原模型相比,mAP分别提升5.7%和8.5%;参数量和计算量分别降低0.61 M和4.2 G;精确度和召回率分别提升7.1%,1.8%和8.9%,7.0%。实验结果表明,改进后的算法更好地平衡了检测精度和轻量化,为边缘终端设备提供了参考。 展开更多
关键词 缺陷检测 轻量化YOLOv7-tiny VoVGA-FPN网络 三重坐标注意力 鬼影混洗卷积
下载PDF
基于改进YOLOv5的口罩佩戴检测算法 被引量:5
2
作者 张欣怡 张飞 +2 位作者 郝斌 高鹭 任晓颖 《计算机工程》 CAS CSCD 北大核心 2023年第8期265-274,共10页
在公共场合密集人群场景下,由于目标遮挡导致的信息缺失及检测目标较小、分辨率低问题,使得人脸佩戴口罩检测算法的检测效果较差。为提高模型的检测精度和速度,减少硬件占用资源,提出一种基于改进YOLOv5s的口罩佩戴检测算法。将标准卷... 在公共场合密集人群场景下,由于目标遮挡导致的信息缺失及检测目标较小、分辨率低问题,使得人脸佩戴口罩检测算法的检测效果较差。为提高模型的检测精度和速度,减少硬件占用资源,提出一种基于改进YOLOv5s的口罩佩戴检测算法。将标准卷积和深度可分离卷积相结合替换传统卷积,并进行通道混洗的鬼影混洗卷积,以在保证精度的前提下提升网络速度。将最近邻法上采样替换为轻量级通用上采样算子,充分利用特征语义信息,在改进的YOLOv5s模型Neck层末端添加自适应空间特征融合,可以对不同尺度的特征进行更好的融合,提高网络检测精度,并通过自适应图片采样,缓解数据不均衡的问题,运用马赛克数据增强对小目标进行充分利用。实验结果表明,该算法在AIZOO数据集上的mAP值达到了93%,比YOLOv5原始模型提升了2个百分点,对于佩戴口罩的人脸检测精度达到了97.7%,优于同等情况下YOLO系列、SSD、RetinaFace的检测效果,同时在GPU上的运行推理速度提升了16.7个百分点,且模型权重文件的内存仅为23.5 MB,适用于实时口罩佩戴检测。 展开更多
关键词 口罩佩戴检测 YOLOv5s模型 鬼影混洗卷积 自适应空间特征融合 轻量级通用上采样算子
下载PDF
改进YOLOv5的路面裂缝检测模型研究 被引量:2
3
作者 沈思远 华蓓 黄汝维 《电子测量技术》 北大核心 2023年第21期132-142,共11页
针对传统的路面裂缝检测方式耗时耗力、成本高、主观性强等问题,提出了一种基于YOLOv5的路面裂缝检测模型YOLOv5-Crack。首先在主干部分处引入坐标注意力机制并优化成CA-plus结构以提高裂缝特征关注度;其次提出一种全新的特征融合网络ES... 针对传统的路面裂缝检测方式耗时耗力、成本高、主观性强等问题,提出了一种基于YOLOv5的路面裂缝检测模型YOLOv5-Crack。首先在主干部分处引入坐标注意力机制并优化成CA-plus结构以提高裂缝特征关注度;其次提出一种全新的特征融合网络ESPP,降低部分计算量的同时提升特征融合能力;然后,在颈部网络中使用重影混洗卷积替代传统卷积,尽可能保持通道语义信息的同时降低计算成本;最后,整体引入SIoU损失函数提升回归精度。为验证改进模型YOLOv5-Crack的有效性,在数据集GRDDC 2020上进行对比实验,结果表明其F1分数分别为58.43%和58.21%,与原YOLOv5模型相比分别提升了4.05%和3.93%,并且降低了7.8 GFLOPs的计算量,FPS达到37.9,有效解决了路面裂缝检测的弊端;同时与主流目标检测算法相比,所提出的YOLOv5-Crack模型在路面裂缝检测方面更具有优越性。 展开更多
关键词 路面裂缝 坐标注意力机制 ESPP结构 重影混洗卷积 SIoU损失函数
下载PDF
基于改进YOLOX的水下垃圾检测算法
4
作者 赵鑫 于波 +1 位作者 徐慧琳 韦小牙 《怀化学院学报》 2023年第5期77-83,共7页
基于机器视觉的水下垃圾清理机器人已经成为修复海洋生态的一种有效手段,但是由于复杂的水下环境会造成采集图像的分辨率较低,导致垃圾检测精度较低。针对上述问题,提出一种基于改进YOLOX-S网络的水下垃圾检测算法,该算法通过采用空间... 基于机器视觉的水下垃圾清理机器人已经成为修复海洋生态的一种有效手段,但是由于复杂的水下环境会造成采集图像的分辨率较低,导致垃圾检测精度较低。针对上述问题,提出一种基于改进YOLOX-S网络的水下垃圾检测算法,该算法通过采用空间到深度卷积模块代替下采样模块提高了图像中物体有效特征的提取能力,提升了其检测精度;主干网络引入空洞空间卷积池化金字塔模块增强了深层特征提取能力,以及颈部网络引入轻量化幽灵混洗卷积模块和Vov幽灵混洗跨阶段瓶颈模块获取了更多的多尺度特征信息,进一步提升检测精度。实验结果表明,在YOLOX网络中引入空间到深度卷积模块、幽灵混洗卷积模块和Vov幽灵混洗跨阶段瓶颈模块、空洞空间卷积池化金字塔模块均可提高YOLOX模型的检测精度。改进后YOLOX-S模型的平均精度均值(mean average precision,mAP)达到了67.4%,较原YOLOX-S模型提高了3.1%,有效提升了复杂海洋环境中的垃圾检测能力。 展开更多
关键词 YOLOX 幽灵混洗卷积模块 空洞卷积 空间到深度卷积模块
下载PDF
改进YOLOv8n的花生品质检测方法
5
作者 黄英来 牛达伟 +1 位作者 侯畅 杨柳松 《计算机工程与应用》 2024年第23期257-267,共11页
花生品质筛选在农业生产和食品安全中具有重要意义。针对传统花生品质筛选方法效率低的问题,提出改进YOLOv8n算法的轻量化花生品质检测模型LE-YOLO(lightweight and efficient)。提出一种分组重序颈部模块(grouped shuffling bottleneck... 花生品质筛选在农业生产和食品安全中具有重要意义。针对传统花生品质筛选方法效率低的问题,提出改进YOLOv8n算法的轻量化花生品质检测模型LE-YOLO(lightweight and efficient)。提出一种分组重序颈部模块(grouped shuffling bottleneck,GSBottleneck),增加了模型非线性拟合能力,减少了模型推理时间;设计了残差分组重序模块(residual group shuffling block,ResGSBlock),并结合GSConv(grouped shuffle convolution)构建轻量颈部网络(lightweight neck,LW-Neck),减少了模型计算成本,提升了模型推理速度;提出自适应特征优化模块(adaptive feature optimization block,AFOB),增强了通道间信息交互和模型表征能力。在DW花生数据集上进行实验验证,相较于YOLOv8n算法,LE-YOLO的计算量减少了1 GFlops,FPS提升了25%,平均精度均值mAP@0.5达到了98%,验证了该算法在检测精度和速度上的良好性能,为花生品质筛选提供了一种有效的方法。 展开更多
关键词 YOLOv8n gsconv GSBottleneck 花生品质筛选 轻量化模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部