针对复杂背景下红外场景对比度低、特征不足、细节不清而导致的目标检测效率低的问题,在YOLOv5s模型基础上通过创建TCC(two-way convolution and Concat)模块并引入华为Ghost模块,提出了一种基于改进YOLOv5s模型的红外弱小目标检测方法...针对复杂背景下红外场景对比度低、特征不足、细节不清而导致的目标检测效率低的问题,在YOLOv5s模型基础上通过创建TCC(two-way convolution and Concat)模块并引入华为Ghost模块,提出了一种基于改进YOLOv5s模型的红外弱小目标检测方法。首先,结合红外图像的低级语义特征,采取二路卷积和多尺度思想创建了TCC模块,提升了特征提取的全面性;接着,为进一步简化网络结构、减少网络参数量,引入轻量化Ghost模块改进了SPP池化层和CSP2卷积网络;最后,以无人机为实验对象,构建了白天和夜间不同背景条件下的红外弱小目标数据集,实验验证了本文改进算法的有效性。结果表明:改进后的YOLOv5s模型在较少损失帧频的情况下,检测精度提升了1.34%,平均精度均值(mean average precision, mAP)提升了2.26%,优于YOLOv4-tiny和YOLOv7-tiny两种轻量化模型,并与YOLOv8s模型精度相当,但模型参数量仅为YOLOv8s模型的53%,完全可以满足嵌入式设备部署的需求。展开更多
文摘针对复杂背景下红外场景对比度低、特征不足、细节不清而导致的目标检测效率低的问题,在YOLOv5s模型基础上通过创建TCC(two-way convolution and Concat)模块并引入华为Ghost模块,提出了一种基于改进YOLOv5s模型的红外弱小目标检测方法。首先,结合红外图像的低级语义特征,采取二路卷积和多尺度思想创建了TCC模块,提升了特征提取的全面性;接着,为进一步简化网络结构、减少网络参数量,引入轻量化Ghost模块改进了SPP池化层和CSP2卷积网络;最后,以无人机为实验对象,构建了白天和夜间不同背景条件下的红外弱小目标数据集,实验验证了本文改进算法的有效性。结果表明:改进后的YOLOv5s模型在较少损失帧频的情况下,检测精度提升了1.34%,平均精度均值(mean average precision, mAP)提升了2.26%,优于YOLOv4-tiny和YOLOv7-tiny两种轻量化模型,并与YOLOv8s模型精度相当,但模型参数量仅为YOLOv8s模型的53%,完全可以满足嵌入式设备部署的需求。