针对变电站绝缘套管过热红外图像检测精度不高的问题,提出了基于改进YOLO第7版(you only look once version 7,YOLOv7)算法的检测技术。通过引入改良的跨阶段部分网络幽灵版本3(cross stage partial network ghost version 3,C3Ghost)...针对变电站绝缘套管过热红外图像检测精度不高的问题,提出了基于改进YOLO第7版(you only look once version 7,YOLOv7)算法的检测技术。通过引入改良的跨阶段部分网络幽灵版本3(cross stage partial network ghost version 3,C3Ghost)模块替换头部网络中的扩展高效层聚合网络(extended efficient layer aggregation network,E-ELAN)模块,优化了网络结构,增强了算法对小目标的识别能力。此外,整合了轻量级基于归一化的注意力模块(normalization-based attention module,NAM)到主干网络中以提高对红外图像特征的利用效率,并引入幽灵卷积(ghost convolution,GhostConv)模块替换了网络中的所有卷积,显著降低了模型的大小。结果表明,与YOLOv7初始算法相比,改进YOLOv7算法在F1评分和平均精确率均值上分别提高了19.51%和16.57%,算法的参数量减小了16.3 MB,且检测速度达到了41帧/s,充分证明了该算法在变电站实际应用中的有效性。该研究不仅显著提高了变电站绝缘套管过热红外图像检测的准确性,也能为后续相关技术的研究提供参考。展开更多
针对现有算法检测含光影斑驳、车道线等复杂背景下路面裂缝图像效果不佳的问题,提出一种基于YOLOv5的裂缝检测改进算法YOLOv5-CG。首先,添加坐标注意力(coordinate attention,CA)模块,将背景噪声隐化,从而使模型针对性地聚焦于有用特征...针对现有算法检测含光影斑驳、车道线等复杂背景下路面裂缝图像效果不佳的问题,提出一种基于YOLOv5的裂缝检测改进算法YOLOv5-CG。首先,添加坐标注意力(coordinate attention,CA)模块,将背景噪声隐化,从而使模型针对性地聚焦于有用特征;其次,将原网络中的Conv模块替换为GhostConv,降低网络的复杂度;最后,建立包含多种背景噪声、视域开阔的路面裂缝病害数据集,解决开源裂缝数据集背景较简单的问题。在自建数据集上进行实验,结果表明:YOLOv5-CG的平均精度均值(mean average precision,mAP)相比原算法提升了3.07%,参数量下降了16.95%,且检测精度与速度均优于其他主流目标检测算法。展开更多
在聚变装置真空检漏领域中,未来聚变装置涉氚运行,检漏人员无法进入装置检漏,这使得这项任务极其困难和耗时。为实现聚变装置泄漏设备的快速准确检测,本文以6自由度机械臂为研究对象,提出了一种GV2-YOLOv5的真空设备检测方法用于真空检...在聚变装置真空检漏领域中,未来聚变装置涉氚运行,检漏人员无法进入装置检漏,这使得这项任务极其困难和耗时。为实现聚变装置泄漏设备的快速准确检测,本文以6自由度机械臂为研究对象,提出了一种GV2-YOLOv5的真空设备检测方法用于真空检漏机器人对真空设备进行识别和定位喷氦。在该方法中,结合轻量级Ghost Net V2网络构建C3GhostV2模块,同时使用轻量的Ghost卷积提取目标特征,从而降低模型参数量,提高计算速度;在特征融合网络中添加Bottleneck Transformers和ECA注意力机制,提高网络特征提取能力以及加强模型通道特征。实验结果表明,在自制数据集上,改进后的模型平均精度为93.2%,相比YOLOv5s提高了1.4%,模型参数量减少了29.5%,检测速度为92 fps,满足实时性与准确性的需求,为真空检漏机器人目标识别与定位提供了一种的解决方案。展开更多
文摘针对变电站绝缘套管过热红外图像检测精度不高的问题,提出了基于改进YOLO第7版(you only look once version 7,YOLOv7)算法的检测技术。通过引入改良的跨阶段部分网络幽灵版本3(cross stage partial network ghost version 3,C3Ghost)模块替换头部网络中的扩展高效层聚合网络(extended efficient layer aggregation network,E-ELAN)模块,优化了网络结构,增强了算法对小目标的识别能力。此外,整合了轻量级基于归一化的注意力模块(normalization-based attention module,NAM)到主干网络中以提高对红外图像特征的利用效率,并引入幽灵卷积(ghost convolution,GhostConv)模块替换了网络中的所有卷积,显著降低了模型的大小。结果表明,与YOLOv7初始算法相比,改进YOLOv7算法在F1评分和平均精确率均值上分别提高了19.51%和16.57%,算法的参数量减小了16.3 MB,且检测速度达到了41帧/s,充分证明了该算法在变电站实际应用中的有效性。该研究不仅显著提高了变电站绝缘套管过热红外图像检测的准确性,也能为后续相关技术的研究提供参考。
文摘针对现有算法检测含光影斑驳、车道线等复杂背景下路面裂缝图像效果不佳的问题,提出一种基于YOLOv5的裂缝检测改进算法YOLOv5-CG。首先,添加坐标注意力(coordinate attention,CA)模块,将背景噪声隐化,从而使模型针对性地聚焦于有用特征;其次,将原网络中的Conv模块替换为GhostConv,降低网络的复杂度;最后,建立包含多种背景噪声、视域开阔的路面裂缝病害数据集,解决开源裂缝数据集背景较简单的问题。在自建数据集上进行实验,结果表明:YOLOv5-CG的平均精度均值(mean average precision,mAP)相比原算法提升了3.07%,参数量下降了16.95%,且检测精度与速度均优于其他主流目标检测算法。
文摘在聚变装置真空检漏领域中,未来聚变装置涉氚运行,检漏人员无法进入装置检漏,这使得这项任务极其困难和耗时。为实现聚变装置泄漏设备的快速准确检测,本文以6自由度机械臂为研究对象,提出了一种GV2-YOLOv5的真空设备检测方法用于真空检漏机器人对真空设备进行识别和定位喷氦。在该方法中,结合轻量级Ghost Net V2网络构建C3GhostV2模块,同时使用轻量的Ghost卷积提取目标特征,从而降低模型参数量,提高计算速度;在特征融合网络中添加Bottleneck Transformers和ECA注意力机制,提高网络特征提取能力以及加强模型通道特征。实验结果表明,在自制数据集上,改进后的模型平均精度为93.2%,相比YOLOv5s提高了1.4%,模型参数量减少了29.5%,检测速度为92 fps,满足实时性与准确性的需求,为真空检漏机器人目标识别与定位提供了一种的解决方案。