In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core co...In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core component of the preload system, is developed using giant magnetostrictive material (GMM) with a hole. The pretightening force of the CGMA is determined by testing. And the magnetic circuit analysis method is introduced to calculate magnetic field intensity of the actuator with a ball screw shaft. To suppress the thermal effects on the magnetostrictive outputs, an oil cooling method which can directly cool the heat source is adopted. A CGMA test platform is established and the static and dynamic output characteristics are respectively studied. The experimental results indicate that the CGMA has good linearity and no double-frequency effect under the bias magnetic field and the output accuracy of the CGMA is significantly improved with cooling measures. Although the output decreased with screw shaft through the actuator, the performance of CGMA meets the design requirements for ball screw preload with output displacement more than 26 μm and force up to 6200 N. The development of a CGMA will provide a new approach for automatic adjustment of double-nut ball screw preload.展开更多
The paper introduces the performances of magnetostrictive actuators and its applications,discusses the design methods for the structure and internal magnetic circuit of a giant magnetostrictive actuator,and makes test...The paper introduces the performances of magnetostrictive actuators and its applications,discusses the design methods for the structure and internal magnetic circuit of a giant magnetostrictive actuator,and makes tests on the output displacement and force characteristics for an actuator using homemade magnetostrictive material.The experimental result shows that the actuator has satisfactory output precisions and ranges in transient and stable states,and can be used in low-frequency vibration control system of precise equipment.展开更多
基金Project(51475267) supported by the National Natural Science Foundation of China
文摘In order to achieve automatic adjustment of the double-nut ball screw preload, a magnetostrictive ball screw preload system is proposed. A new cylindrical giant magnetostrictive actuator (CGMA), which is the core component of the preload system, is developed using giant magnetostrictive material (GMM) with a hole. The pretightening force of the CGMA is determined by testing. And the magnetic circuit analysis method is introduced to calculate magnetic field intensity of the actuator with a ball screw shaft. To suppress the thermal effects on the magnetostrictive outputs, an oil cooling method which can directly cool the heat source is adopted. A CGMA test platform is established and the static and dynamic output characteristics are respectively studied. The experimental results indicate that the CGMA has good linearity and no double-frequency effect under the bias magnetic field and the output accuracy of the CGMA is significantly improved with cooling measures. Although the output decreased with screw shaft through the actuator, the performance of CGMA meets the design requirements for ball screw preload with output displacement more than 26 μm and force up to 6200 N. The development of a CGMA will provide a new approach for automatic adjustment of double-nut ball screw preload.
基金Sponsored by National Nature Science Foundation of China(50005020)Youth Foundation Support Project of Ningbo Province(02J20102-07)
文摘The paper introduces the performances of magnetostrictive actuators and its applications,discusses the design methods for the structure and internal magnetic circuit of a giant magnetostrictive actuator,and makes tests on the output displacement and force characteristics for an actuator using homemade magnetostrictive material.The experimental result shows that the actuator has satisfactory output precisions and ranges in transient and stable states,and can be used in low-frequency vibration control system of precise equipment.