According to the generalized uncertainty principle (GUP), the Klein-Gordon equation is corrected by the quantum gravity exactly. Hence, the corrected Klein-Gordon equation will be more precise on the expression of the...According to the generalized uncertainty principle (GUP), the Klein-Gordon equation is corrected by the quantum gravity exactly. Hence, the corrected Klein-Gordon equation will be more precise on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the Gibbons-Maeda-Dilaton black hole is obtained near the horizon by quantum gravity. Analyzing the results carefully, it is obvious for us that the tunneling result is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we also infer that the tunneling radiation would be stopped at some particular temperature.展开更多
文摘According to the generalized uncertainty principle (GUP), the Klein-Gordon equation is corrected by the quantum gravity exactly. Hence, the corrected Klein-Gordon equation will be more precise on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the Gibbons-Maeda-Dilaton black hole is obtained near the horizon by quantum gravity. Analyzing the results carefully, it is obvious for us that the tunneling result is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we also infer that the tunneling radiation would be stopped at some particular temperature.