The synthesis of 1,3,5-substituted-1,2,4-triazoles from α-imino-3-pyridine formic acid,acetamidine and anisole hydrazine as a model reaction in this paper and the synthesis mechanism of 1,3,5-substituted-1,2,4-triazo...The synthesis of 1,3,5-substituted-1,2,4-triazoles from α-imino-3-pyridine formic acid,acetamidine and anisole hydrazine as a model reaction in this paper and the synthesis mechanism of 1,3,5-substituted-1,2,4-triazole compounds from carboxylic acids,amidines and hydrazines have been first investigated with the B3 LYP/6-311++G** method.According to the potential energy profile,it can be predicted that the course of the reaction consists of five reactions containing six elementary reactions.The α-imino-3-pyridine formic acid and acetamidine form first an intermediate product through a dehydration reaction; the intermediate product further combines with hydrogen ion to form a positive ion; the positive ion reacts with anisole hydrazine by a dehydration reaction to form another positive ion; then,followed by two isomerization reactions,the final reaction with the acetate ion(Ac-) produces the final product.The research results reveal the laws of synthesis reaction of 1,3,5-substituted-1,2,4-triazoles by the carboxylic acids,amidines,hydrazines and their derivatives on theoretical level.It provides the systemic theoretical basis for the synthesis,development and application of 1,3,5-substituted-1,2,4-triazole compounds.展开更多
X2Ge=Sn:(X=H,Me,F,Cl,Br,Ph,Ar…)are new species of chemistry.The cycloaddition reaction of X2Ge=Sn:is a new study field of stannylene chemistry.To explore the rules of cycloaddition reaction between X2Ge=Sn:and the sy...X2Ge=Sn:(X=H,Me,F,Cl,Br,Ph,Ar…)are new species of chemistry.The cycloaddition reaction of X2Ge=Sn:is a new study field of stannylene chemistry.To explore the rules of cycloaddition reaction between X2Ge=Sn:and the symmetric p-bonded compounds,the cycloaddition reactions of Me2Ge=Sn:and ethylene were selected as model reactions in this paper,and the mechanism was investigated for the first time here using the MP2 theory together with the 6-311++G**basis set for C,H and Ge atoms and the LanL2dzbasis set for Sn atoms.From the potential energy profile,it could be predicted that the reaction has one dominant reaction channel.The reaction rule present is that the 5p unoccupied orbital of Sn in Me2Ge=Sn:and theπorbital of ethylene form a p→p donor–acceptor bond,resulting in an intermediate which,due to its instability,makes itself isomerize into a four-membered Ge-heterocyclic ring stannylene.Because the 5p unoccupied orbital of Sn atom in the four-membered Ge-heterocyclic ring stannylene and theπorbital of ethylene form a p→p donor-acceptor bond,the four-membered Ge-heterocyclic ring stannylene further combines with ethylene to get another intermediate.Because the Sn atom in this intermediate exhibits sp3 hybridization after transition state,the intermediate isomerizes to a Ge-heterocyclic spiro-Sn-heterocyclic ring compound.The research result indicates the laws of cycloaddition reaction between X2Ge=Sn:and the symmetricπ-bonded compounds.This study opens up a new research field for stannylene chemistry.展开更多
基金supported by the National Natural Science Foundation of China(No.51102114)
文摘The synthesis of 1,3,5-substituted-1,2,4-triazoles from α-imino-3-pyridine formic acid,acetamidine and anisole hydrazine as a model reaction in this paper and the synthesis mechanism of 1,3,5-substituted-1,2,4-triazole compounds from carboxylic acids,amidines and hydrazines have been first investigated with the B3 LYP/6-311++G** method.According to the potential energy profile,it can be predicted that the course of the reaction consists of five reactions containing six elementary reactions.The α-imino-3-pyridine formic acid and acetamidine form first an intermediate product through a dehydration reaction; the intermediate product further combines with hydrogen ion to form a positive ion; the positive ion reacts with anisole hydrazine by a dehydration reaction to form another positive ion; then,followed by two isomerization reactions,the final reaction with the acetate ion(Ac-) produces the final product.The research results reveal the laws of synthesis reaction of 1,3,5-substituted-1,2,4-triazoles by the carboxylic acids,amidines,hydrazines and their derivatives on theoretical level.It provides the systemic theoretical basis for the synthesis,development and application of 1,3,5-substituted-1,2,4-triazole compounds.
基金Supported by the National Natural Science Foundation of China(No.31370090)Project of Key R&D of Shandong Province(No.2015GSF121006)。
文摘X2Ge=Sn:(X=H,Me,F,Cl,Br,Ph,Ar…)are new species of chemistry.The cycloaddition reaction of X2Ge=Sn:is a new study field of stannylene chemistry.To explore the rules of cycloaddition reaction between X2Ge=Sn:and the symmetric p-bonded compounds,the cycloaddition reactions of Me2Ge=Sn:and ethylene were selected as model reactions in this paper,and the mechanism was investigated for the first time here using the MP2 theory together with the 6-311++G**basis set for C,H and Ge atoms and the LanL2dzbasis set for Sn atoms.From the potential energy profile,it could be predicted that the reaction has one dominant reaction channel.The reaction rule present is that the 5p unoccupied orbital of Sn in Me2Ge=Sn:and theπorbital of ethylene form a p→p donor–acceptor bond,resulting in an intermediate which,due to its instability,makes itself isomerize into a four-membered Ge-heterocyclic ring stannylene.Because the 5p unoccupied orbital of Sn atom in the four-membered Ge-heterocyclic ring stannylene and theπorbital of ethylene form a p→p donor-acceptor bond,the four-membered Ge-heterocyclic ring stannylene further combines with ethylene to get another intermediate.Because the Sn atom in this intermediate exhibits sp3 hybridization after transition state,the intermediate isomerizes to a Ge-heterocyclic spiro-Sn-heterocyclic ring compound.The research result indicates the laws of cycloaddition reaction between X2Ge=Sn:and the symmetricπ-bonded compounds.This study opens up a new research field for stannylene chemistry.