In this paper we propose an automatic bandwidth control method for the performance improvement of Binary Amplitude Shift Keying (BASK) system for Giga-bit Modem in millimeter band. To improve the performance of the BA...In this paper we propose an automatic bandwidth control method for the performance improvement of Binary Amplitude Shift Keying (BASK) system for Giga-bit Modem in millimeter band. To improve the performance of the BASK system with a fixed bandwidth, the proposed method is to adjust a bandwidth of low pass filter in receiver using the fuzzy system. The BASK system consists of a high speed shutter of the transmitter and a counter and a repeater of receiver. The repeater consists of four stage converters, and a converter is constructed with a low pass filter and a limiter. The inputs to the fuzzy system are the reminder and integral of remainder of counter, and output is a bandwidth. We used a Viterbi algorithm to find the optimum detection from output of the counter. Simulation results show that the proposed system improves the performance compared to the fixed bandwidth.展开更多
This paper presents a 65-nm 1-Gb NOR-type floating-gate flash memory,in which the cell device and chip circuit are developed and optimized.In order to solve the speed problem of giga-level NOR flash in the deep submic...This paper presents a 65-nm 1-Gb NOR-type floating-gate flash memory,in which the cell device and chip circuit are developed and optimized.In order to solve the speed problem of giga-level NOR flash in the deep submicron process,the models of long bit-line and word-line are first given,by which the capacitive and resistive loads could be estimated.Based on that,the read path and key modules are optimized to enhance the chip access property and reliability.With the measurement results,the flash memory cell presents good endurance and retention properties,and the macro is operated with 1-ls/byte program speed and less than 50-ns read time under 3.3 V supply.展开更多
文摘In this paper we propose an automatic bandwidth control method for the performance improvement of Binary Amplitude Shift Keying (BASK) system for Giga-bit Modem in millimeter band. To improve the performance of the BASK system with a fixed bandwidth, the proposed method is to adjust a bandwidth of low pass filter in receiver using the fuzzy system. The BASK system consists of a high speed shutter of the transmitter and a counter and a repeater of receiver. The repeater consists of four stage converters, and a converter is constructed with a low pass filter and a limiter. The inputs to the fuzzy system are the reminder and integral of remainder of counter, and output is a bandwidth. We used a Viterbi algorithm to find the optimum detection from output of the counter. Simulation results show that the proposed system improves the performance compared to the fixed bandwidth.
基金supported in part by the Ministry of Science and Technology of China (2010CB934200,2011CBA00600)the National Natural Science Foundation of China (61176073)+1 种基金the National Science and Technology Major Project of China (2009ZX02023-005)the Director’s Fund of Institute of Microelectronics,Chinese Academy of Science
文摘This paper presents a 65-nm 1-Gb NOR-type floating-gate flash memory,in which the cell device and chip circuit are developed and optimized.In order to solve the speed problem of giga-level NOR flash in the deep submicron process,the models of long bit-line and word-line are first given,by which the capacitive and resistive loads could be estimated.Based on that,the read path and key modules are optimized to enhance the chip access property and reliability.With the measurement results,the flash memory cell presents good endurance and retention properties,and the macro is operated with 1-ls/byte program speed and less than 50-ns read time under 3.3 V supply.