AIM:To investigate the anti-tumor function of ginsenoside Rg3 on hepatocellular carcinoma(HCC) in vitro and in vivo,and its mechanism.METHODS:Hep1-6 and HepG2 cells were treated by Rg3 in different concentrations(0,50...AIM:To investigate the anti-tumor function of ginsenoside Rg3 on hepatocellular carcinoma(HCC) in vitro and in vivo,and its mechanism.METHODS:Hep1-6 and HepG2 cells were treated by Rg3 in different concentrations(0,50,100 and 200 μg/mL) in vitro.After incubation for 0,6,12,24 and 48 h,cell viability was measured by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay.Apoptosis was identified by terminal deoxynucleotidyl transferasemediated dUTP-biotin nick end labeling.Caspase-3 activity was measured by chromophore p-nitroanilide and flow cytometry.Bcl-2 family proteins were ascertained by Western-blotting.Mitochondria membrane potentialwas detected by 5,5',6' 6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide.Forty liver tumor-bearing C57Bl6 mice were divided randomly into 4 groups for intra-tumor injection of saline,ginsenoside Rg3,cyclophosphamide(CTX) and ginsenoside Rg3 + CTX combination.RESULTS:The survival time was followed up to 102 d.The mice in the Rg3 + CTX group showed significant increased survival time compared with those in the control group(P < 0.05).Rg3 could inhibit HCC cell proliferation and induce cell apoptosis in vitro in the concentration and time dependent manner.It also induced mitochondria membrane potential to decrease.Caspase-3 activation can be blocked by the inhibitor z-DEVD-FMK.Bax was up-regulated while Bcl-2 and Bcl-XL were down-regulated after Rg3 treatment.CONCLUSION:Our data suggested that Rg3 alone or combined with CTX inhibited tumor growth in vivo and prolonged mouse survival time by inducing HCC cell apoptosis via intrinsic pathway by expression alterations of Bcl-2 family proteins.展开更多
Objective The aim of the study was to make a further evaluation of Ginsenoside Rg3. Methods The clinical effects of the drug on moderate and advanced lung cancer, including side effects, were observed. Results ...Objective The aim of the study was to make a further evaluation of Ginsenoside Rg3. Methods The clinical effects of the drug on moderate and advanced lung cancer, including side effects, were observed. Results Ginsenoside Rg3 improved chemotherapy significantly. The clinical relief rate of patients treated with antiangiogenic agent 20 (R) Ginsenoside Rg3 was 36.6%, which was higher than that of the patients not treated with it (16.7%)( P <0.05). It had no significantly different effects on lung cancers of different types of tissues ( P >0.05). It provided better treatment on the cancer at early stage than that at advanced stage ( P <0.05). Moreover the living qualities of the patients were improved notably ( P <0.05). Conclusion Combined with chemotherapy, angiogenesis inhibitor 20(R) Ginsenoside Rg3 can improve clinical therapeutic efficacy and the living qualities of patients significantly.展开更多
Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller molecular weight.However,...Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller molecular weight.However,the anti-HCC efficacy and mechanisms of ginsenoside Rk3 have not yet been characterized.Here,we investigated the mechanism by which ginsenoside Rk3,a tetracyclic triterpenoid rare ginsenoside,inhibits the growth of HCC.We first explored the possible potential targets of Rk3 through network pharmacology.Both in vitro(HepG2 and HCC-LM3 cells)and in vivo(primary liver cancer mice and HCC-LM3 subcutaneous tumor-bearing mice)studies revealed that Rk3 significantly inhibits the proliferation of HCC.Meanwhile,Rk3 blocked the cell cycle in HCC at the G1 phase and induced autophagy and apoptosis in HCC.Further proteomics and siRNA experiments showed that Rk3 regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway to inhibit HCC growth,which was validated by molecular docking and surface plasmon resonance.In conclusion,we report the discovery that ginsenoside Rk3 binds to PI3K/AKT and promotes autophagy and apoptosis in HCC.Our data strongly support the translation of ginsenoside Rk3 into novel PI3K/AKT-targeting therapeutics for HCC treatment with low toxic side effects.展开更多
Heavy alcohol consumption results in alcoholic liver disease(ALD)with inadequate therapeutic options.Here,we first report the potential beneficial effects of ginsenoside Rk2(Rk2),a rare dehydroprotopanaxadiol saponin ...Heavy alcohol consumption results in alcoholic liver disease(ALD)with inadequate therapeutic options.Here,we first report the potential beneficial effects of ginsenoside Rk2(Rk2),a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng,against alcoholic liver injury in mice.Chronic-plus-single-binge ethanol feeding caused severe liver injury,as manifested by significantly elevated serum aminotransferase levels,hepatic histological changes,increased lipid accumulation,oxidative stress,and inflammation in the liver.These deleterious effects were alleviated by the treatment with Rk2(5 and 30 mg/kg).Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3)inhibitor,Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver.Meanwhile,the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine.Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.展开更多
Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases.Studies have shown that ginsenoside Rb1 has neurotrophic and ne...Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases.Studies have shown that ginsenoside Rb1 has neurotrophic and neuroprotective effects.However,whether it influences energy metabolism after spinal cord injury remains unclear.In this study,we treated mouse and cell models of spinal cord injury with ginsenoside Rb1.We found that ginsenoside Rb1 remarkably inhibited neuronal oxidative stress,protected mitochondria,promoted neuronal metabolic reprogramming,increased glycolytic activity and ATP production,and promoted the survival of motor neurons in the anterior horn and the recovery of motor function in the hind limb.Because sirtuin 3 regulates glycolysis and oxidative stress,mouse and cell models of spinal cord injury were treated with the sirtuin 3 inhibitor 3-TYP.When Sirt3 expression was suppressed,we found that the therapeutic effects of ginsenoside Rb1 on spinal cord injury were remarkably inhibited.Therefore,ginsenoside Rb1 is considered a potential drug for the treatment of spinal cord injury,and its therapeutic effects are closely related to sirtuin 3.展开更多
A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the...A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the protective capacity of the saponins extracted from panax ginseng and its primary active ingredient ginsenosideRg1oncerebral ischemic injury.Methods:Fetal rat neurons(FRNs)were cultured in glucose-and-serumfree medium and exposed to hypoxia to establish a cerebral ischemia model in vitro(oxygen and glucose deprivation model,OGD).Antioxidant indexes(CAT,SOD),inflammatory markers(MPO,TNF-αand IL-6),and the expression of apoptosis and proliferation associated proteins(NF kB-p65,Caspase 3-cleaved,BCL-2)were examined.Results:Pre-treatment of Rg1(30–100μg/mL)could effectively inhibit the decline of antioxidant indexes(CAT,SOD)and increase in inflammatory markers(MPO,TNF-αand IL-6),and effectively inhibited the apoptosis in FRNs induced by OGD in a gradient-dependent manner.The mechanism analysis showed that the role of Rg1 in protecting against ischemia-induced neuron damage depends on its indirect up-regulation of PPAR protein via suppression of rnomiRNA-27a-3p.Moreover,these effects of Rg1 could be reversed by exogenous rno-miRNA-27a-3p and PPAR gene silencing in FRNs exposed to OGD.Conclusion:To summarize,our study demonstrates that Rg1 could effectively attenuate neuronal damage caused by cerebral ischemia via the rno-miRNA-27a-3p/PPARγpathway.Further,clarification of the novel mechanism will certainly improve our previous understanding of the role of Rg1 and enhancing its level in treatments for alleviating ischemic brain injury.展开更多
Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is...Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.展开更多
目的探讨人参皂苷Rg_(3)对过氧化氢诱导的人晶状体上皮细胞氧化损伤的改善作用及对核转录因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)/血红素加氧酶-1(heme oxygenase 1,HO-1)信号通路的调节作用。方法用不同浓度人参皂...目的探讨人参皂苷Rg_(3)对过氧化氢诱导的人晶状体上皮细胞氧化损伤的改善作用及对核转录因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)/血红素加氧酶-1(heme oxygenase 1,HO-1)信号通路的调节作用。方法用不同浓度人参皂苷Rg_(3)处理过氧化氢诱导的SRA01/04细胞,用噻唑盐(methyl thiazolyl tetrazolium,MTT)法检测细胞存活率。将第3代对数生长期SRA01/04细胞随机分为正常组、氧化损伤组(用200μmol∙mL^(−1)过氧化氢处理)、人参皂苷Rg_(3)低剂量组和人参皂苷Rg_(3)高剂量组(分别用40、80μg∙mL^(−1)人参皂苷Rg_(3)处理6 h,更换培养基后用200μmol∙mL^(−1)过氧化氢处理12 h),用MTT法检测细胞存活率,用流式细胞仪检测细胞凋亡率,用试剂盒检测丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxidedismutase,SOD)和谷胱甘肽过氧化物酶(glutathioneperoxidase,GSH-Px)的含量,用蛋白印迹法检测Nrf2、Kelch样环氧氯丙烷相关蛋白1(Kelch like epichlorohydrin related protein 1,Keap1)和HO-1蛋白的相对表达量。结果与0μg∙mL^(−1)人参皂苷Rg_(3)组比较,10、20、40、80μg∙mL^(−1)人参皂苷Rg_(3)组的细胞存活率逐渐升高(P<0.05)。与正常组比较,氧化损伤组的细胞存活率、SOD和GSHPx含量以及Nrf2、Keap1和HO-1蛋白相对表达量降低,细胞凋亡率和MDA含量升高(P<0.05);与氧化损伤组比较,人参皂苷Rg_(3)低剂量和人参皂苷Rg_(3)高剂量组的细胞存活率、SOD和GSH-Px含量以及Nrf2、Keap1和HO-1蛋白的相对表达量升高,细胞凋亡率和MDA含量降低(P<0.05);人参皂苷Rg_(3)低剂量和人参皂苷Rg_(3)高剂量组各项指标水平变化规律相同,人参皂苷Rg_(3)高剂量组更显著(P<0.05)。结论人参皂苷Rg_(3)可抑制过氧化氢诱导的人晶状体上皮细胞凋亡,减轻氧化应激损伤,其可能是通过激活Nrf2/HO-1信号通路发挥调节作用的。展开更多
基金Supported by The National Natural Science Foundation of China,No.30700778the Health Bureau Fund of Zhejiang Province,No.2007QN006,No.2008B080 and No.2008A050National Basic Research Program(973)of China,No.2007CB513005
文摘AIM:To investigate the anti-tumor function of ginsenoside Rg3 on hepatocellular carcinoma(HCC) in vitro and in vivo,and its mechanism.METHODS:Hep1-6 and HepG2 cells were treated by Rg3 in different concentrations(0,50,100 and 200 μg/mL) in vitro.After incubation for 0,6,12,24 and 48 h,cell viability was measured by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay.Apoptosis was identified by terminal deoxynucleotidyl transferasemediated dUTP-biotin nick end labeling.Caspase-3 activity was measured by chromophore p-nitroanilide and flow cytometry.Bcl-2 family proteins were ascertained by Western-blotting.Mitochondria membrane potentialwas detected by 5,5',6' 6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide.Forty liver tumor-bearing C57Bl6 mice were divided randomly into 4 groups for intra-tumor injection of saline,ginsenoside Rg3,cyclophosphamide(CTX) and ginsenoside Rg3 + CTX combination.RESULTS:The survival time was followed up to 102 d.The mice in the Rg3 + CTX group showed significant increased survival time compared with those in the control group(P < 0.05).Rg3 could inhibit HCC cell proliferation and induce cell apoptosis in vitro in the concentration and time dependent manner.It also induced mitochondria membrane potential to decrease.Caspase-3 activation can be blocked by the inhibitor z-DEVD-FMK.Bax was up-regulated while Bcl-2 and Bcl-XL were down-regulated after Rg3 treatment.CONCLUSION:Our data suggested that Rg3 alone or combined with CTX inhibited tumor growth in vivo and prolonged mouse survival time by inducing HCC cell apoptosis via intrinsic pathway by expression alterations of Bcl-2 family proteins.
文摘Objective The aim of the study was to make a further evaluation of Ginsenoside Rg3. Methods The clinical effects of the drug on moderate and advanced lung cancer, including side effects, were observed. Results Ginsenoside Rg3 improved chemotherapy significantly. The clinical relief rate of patients treated with antiangiogenic agent 20 (R) Ginsenoside Rg3 was 36.6%, which was higher than that of the patients not treated with it (16.7%)( P <0.05). It had no significantly different effects on lung cancers of different types of tissues ( P >0.05). It provided better treatment on the cancer at early stage than that at advanced stage ( P <0.05). Moreover the living qualities of the patients were improved notably ( P <0.05). Conclusion Combined with chemotherapy, angiogenesis inhibitor 20(R) Ginsenoside Rg3 can improve clinical therapeutic efficacy and the living qualities of patients significantly.
基金supported by the National Key R&D Program of China(Grant No.:2021YFC2101500)the National Natural Science Foundation of China(Grant Nos.:22078264,21978235,22108224,and 21978236)+2 种基金the Natural Science Basic Research Program of Shaanxi,China(Grant Nos.:2023-JC-JQ-17 and 2023-JCQN-0109)the Xi'an Science and Technology Project,China(Project No.:20191422315KYPT014JC016)Key Research and Development Program of Shaanxi,China(Grant No.:2022ZDLSF05-12).
文摘Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller molecular weight.However,the anti-HCC efficacy and mechanisms of ginsenoside Rk3 have not yet been characterized.Here,we investigated the mechanism by which ginsenoside Rk3,a tetracyclic triterpenoid rare ginsenoside,inhibits the growth of HCC.We first explored the possible potential targets of Rk3 through network pharmacology.Both in vitro(HepG2 and HCC-LM3 cells)and in vivo(primary liver cancer mice and HCC-LM3 subcutaneous tumor-bearing mice)studies revealed that Rk3 significantly inhibits the proliferation of HCC.Meanwhile,Rk3 blocked the cell cycle in HCC at the G1 phase and induced autophagy and apoptosis in HCC.Further proteomics and siRNA experiments showed that Rk3 regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway to inhibit HCC growth,which was validated by molecular docking and surface plasmon resonance.In conclusion,we report the discovery that ginsenoside Rk3 binds to PI3K/AKT and promotes autophagy and apoptosis in HCC.Our data strongly support the translation of ginsenoside Rk3 into novel PI3K/AKT-targeting therapeutics for HCC treatment with low toxic side effects.
基金supported by grants from the Research Committee of the University of Macao(Grant No.:MYRG2022-00020-ICMS)the Science and Technology Development Fund,Macao SAR,China(File No.:0074/2021/AFJ and 0052/2022/A1).
文摘Heavy alcohol consumption results in alcoholic liver disease(ALD)with inadequate therapeutic options.Here,we first report the potential beneficial effects of ginsenoside Rk2(Rk2),a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng,against alcoholic liver injury in mice.Chronic-plus-single-binge ethanol feeding caused severe liver injury,as manifested by significantly elevated serum aminotransferase levels,hepatic histological changes,increased lipid accumulation,oxidative stress,and inflammation in the liver.These deleterious effects were alleviated by the treatment with Rk2(5 and 30 mg/kg).Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3)inhibitor,Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver.Meanwhile,the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine.Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.
基金supported by the National Natural Science Foundation of ChinaNos.81871556+2 种基金82072165Liaoning Revitalization Talents ProgramNo.XLYC1902108 (all to XFM)
文摘Mitochondrial damage caused by oxidative stress and energy deficiency induced by focal ischemia and hypoxia are important factors that aggravate diseases.Studies have shown that ginsenoside Rb1 has neurotrophic and neuroprotective effects.However,whether it influences energy metabolism after spinal cord injury remains unclear.In this study,we treated mouse and cell models of spinal cord injury with ginsenoside Rb1.We found that ginsenoside Rb1 remarkably inhibited neuronal oxidative stress,protected mitochondria,promoted neuronal metabolic reprogramming,increased glycolytic activity and ATP production,and promoted the survival of motor neurons in the anterior horn and the recovery of motor function in the hind limb.Because sirtuin 3 regulates glycolysis and oxidative stress,mouse and cell models of spinal cord injury were treated with the sirtuin 3 inhibitor 3-TYP.When Sirt3 expression was suppressed,we found that the therapeutic effects of ginsenoside Rb1 on spinal cord injury were remarkably inhibited.Therefore,ginsenoside Rb1 is considered a potential drug for the treatment of spinal cord injury,and its therapeutic effects are closely related to sirtuin 3.
基金supported by the National Natural Science Foundation of China,Nos.81973317,81374007,81870977the Natural Science Foundation of Heilongjiang Province,HL2019H062+1 种基金the Projects of Basic Scientific Research Business Expenses in Higher Education Institutions of Heilongjiang Province,No.2018-KYYWF-MY-005the Students Innovative and the Entrepreneurship Training Scientific Research Foundation of Heilongjiang Province,No.102292017001.
文摘A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the protective capacity of the saponins extracted from panax ginseng and its primary active ingredient ginsenosideRg1oncerebral ischemic injury.Methods:Fetal rat neurons(FRNs)were cultured in glucose-and-serumfree medium and exposed to hypoxia to establish a cerebral ischemia model in vitro(oxygen and glucose deprivation model,OGD).Antioxidant indexes(CAT,SOD),inflammatory markers(MPO,TNF-αand IL-6),and the expression of apoptosis and proliferation associated proteins(NF kB-p65,Caspase 3-cleaved,BCL-2)were examined.Results:Pre-treatment of Rg1(30–100μg/mL)could effectively inhibit the decline of antioxidant indexes(CAT,SOD)and increase in inflammatory markers(MPO,TNF-αand IL-6),and effectively inhibited the apoptosis in FRNs induced by OGD in a gradient-dependent manner.The mechanism analysis showed that the role of Rg1 in protecting against ischemia-induced neuron damage depends on its indirect up-regulation of PPAR protein via suppression of rnomiRNA-27a-3p.Moreover,these effects of Rg1 could be reversed by exogenous rno-miRNA-27a-3p and PPAR gene silencing in FRNs exposed to OGD.Conclusion:To summarize,our study demonstrates that Rg1 could effectively attenuate neuronal damage caused by cerebral ischemia via the rno-miRNA-27a-3p/PPARγpathway.Further,clarification of the novel mechanism will certainly improve our previous understanding of the role of Rg1 and enhancing its level in treatments for alleviating ischemic brain injury.
基金supported by the National Natural Science Foundation of China[31872674]the Jilin Talent Development Foundation Grant[20200301018RQ]the Fundamental Research Funds for the Central Universities[CGZH202206].
文摘Obesity-induced type 2 diabetes is mainly due to excessive free fatty acids leading to insulin resistance.Increasing thermogenesis is regarded as an effective strategy for hypolipidemia and hypoglycemia.Ginsenoside is a natural active component in Panax ginseng C.A.Meyer,and some of them enhance thermogenesis.However,there are few studies on the mechanism and target of ginsenosides enhancing thermogenesis.Using thermogenic protein uncoupling protein 1(UCP1)-luciferase reporter assay,we identifi ed ginsenoside F1 as a novel UCP1 activator in the ginsenosides library.Using pull down assay and inhibitor interference,we found F1 binds toβ3-adrenergic receptors(β3-AR)to enhance UCP1 expression via cAMP/PKA/CREB pathway.We also investigated the ability of F1 on energy metabolism in obesity-induced diabetic mice,including body weight,body composition and energy expenditure.The results of proteomics showed that F1 signifi cantly up-regulated thermogenesis proteins and lipolytic proteins,but down-regulated fatty acid synthesis proteins.Ginsenoside F1 increased thermogenesis and ameliorated insulin resistance specifi cally by promoting the browning of white adipose tissue in obese mice.Additionally,ginsenoside F1 improves norepinephrine-induced insulin resistance in adipocytes and hepatocytes,and shows a stronger mitochondria respiration ability than norepinephrine.These fi ndings suggest that ginsenoside F1 is a promising lead compound in the improvement of insulin resistance.
文摘目的探讨人参皂苷Rg_(3)对过氧化氢诱导的人晶状体上皮细胞氧化损伤的改善作用及对核转录因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)/血红素加氧酶-1(heme oxygenase 1,HO-1)信号通路的调节作用。方法用不同浓度人参皂苷Rg_(3)处理过氧化氢诱导的SRA01/04细胞,用噻唑盐(methyl thiazolyl tetrazolium,MTT)法检测细胞存活率。将第3代对数生长期SRA01/04细胞随机分为正常组、氧化损伤组(用200μmol∙mL^(−1)过氧化氢处理)、人参皂苷Rg_(3)低剂量组和人参皂苷Rg_(3)高剂量组(分别用40、80μg∙mL^(−1)人参皂苷Rg_(3)处理6 h,更换培养基后用200μmol∙mL^(−1)过氧化氢处理12 h),用MTT法检测细胞存活率,用流式细胞仪检测细胞凋亡率,用试剂盒检测丙二醛(malondialdehyde,MDA)、超氧化物歧化酶(superoxidedismutase,SOD)和谷胱甘肽过氧化物酶(glutathioneperoxidase,GSH-Px)的含量,用蛋白印迹法检测Nrf2、Kelch样环氧氯丙烷相关蛋白1(Kelch like epichlorohydrin related protein 1,Keap1)和HO-1蛋白的相对表达量。结果与0μg∙mL^(−1)人参皂苷Rg_(3)组比较,10、20、40、80μg∙mL^(−1)人参皂苷Rg_(3)组的细胞存活率逐渐升高(P<0.05)。与正常组比较,氧化损伤组的细胞存活率、SOD和GSHPx含量以及Nrf2、Keap1和HO-1蛋白相对表达量降低,细胞凋亡率和MDA含量升高(P<0.05);与氧化损伤组比较,人参皂苷Rg_(3)低剂量和人参皂苷Rg_(3)高剂量组的细胞存活率、SOD和GSH-Px含量以及Nrf2、Keap1和HO-1蛋白的相对表达量升高,细胞凋亡率和MDA含量降低(P<0.05);人参皂苷Rg_(3)低剂量和人参皂苷Rg_(3)高剂量组各项指标水平变化规律相同,人参皂苷Rg_(3)高剂量组更显著(P<0.05)。结论人参皂苷Rg_(3)可抑制过氧化氢诱导的人晶状体上皮细胞凋亡,减轻氧化应激损伤,其可能是通过激活Nrf2/HO-1信号通路发挥调节作用的。