By using the three-dimensional complex Ginzburg--Landau equation with cubic--quintic nonlinearity, this paper numerically investigates the interactions between optical bullets with different velocities in a dissipativ...By using the three-dimensional complex Ginzburg--Landau equation with cubic--quintic nonlinearity, this paper numerically investigates the interactions between optical bullets with different velocities in a dissipative system. The results reveal an abundance of interesting behaviours relating to the velocities of bullets: merging of the optical bullets into a single one at small velocities; periodic collisions at large velocities and disappearance of two bullets after several collisions in an intermediate region of velocity. Finally, it also reports that an extra bullet derives from the collision of optical bullets when optical bullets are at small velocities but with high energies.展开更多
The wave propagation in the one-dimensional complex Ginzbur-Landau equation (CGLE) is studied by considering a wave source at the system boundary. A special propagation region, which is an island-shaped zone surroun...The wave propagation in the one-dimensional complex Ginzbur-Landau equation (CGLE) is studied by considering a wave source at the system boundary. A special propagation region, which is an island-shaped zone surrounded by the defect turbulence in the system parameter space, is observed in our numerical experiment. The wave signal spreads in the whole space with a novel amplitude wave pattern in the area. The relevant factors of the pattern formation, such as the wave speed, the maximum propagating distance and the oscillatory frequency, are studied in detail. The stability and the generality of the region are testified by adopting various initial conditions. This finding of the amplitude pattern extends the wave propagation region in the parameter space and presents a new signal transmission mode, and is therefore expected to be of much importance.展开更多
In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭ...In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭxkuε)xj+ε^2^-b(x)(1-|uε|^2)uε,x∈Ω,and conclude that each vortex,bj(t)(j=1,2,…,N)satisfies dt^-dbj(t)=-(a(bj(t))^-a1k(bj(t))Эxka(bj(t)),a(aj(t))^-a2k(bj(t))Эxka(bj(t))),where a(x)=√a11a22-a12^2. We prove that all the vortices are pinned together to the critical points of a(x). Furthermore, we prove that these critical points can not be the maximum points.展开更多
Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic ...Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors.展开更多
By the interpolating inequality and a priori estimates in the weighted space,the existence of the global solutions for the Ginzburg-Landau equation coupled with the BBM equation in an unbounded domain is considered, a...By the interpolating inequality and a priori estimates in the weighted space,the existence of the global solutions for the Ginzburg-Landau equation coupled with the BBM equation in an unbounded domain is considered, and the existence of the maximal attractor is obtained.展开更多
The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical ...The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0.展开更多
A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-att...A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.展开更多
In this paper, the generalized synchronization of two unidirectionally coupled Ginzburg Landau equations is studied theoretically. It is demonstrated that the drive-response system has bounded attraction domain and co...In this paper, the generalized synchronization of two unidirectionally coupled Ginzburg Landau equations is studied theoretically. It is demonstrated that the drive-response system has bounded attraction domain and compact attractors. It is derived that the correction equation has asymptotically stable zero solutions under certain conditions and that the sufficient conditions for smooth generalized synchronization and Holder continuous generalized synchronization exist in the coupling system. Numerical result analysis shows the correctness of theory.展开更多
A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-n...A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.展开更多
The dynamical behaviour of the one-dimensional complex Ginzburg-Landau equation (CGLE) with finite system size L is investigated, based on numerical simulations. By varying the system size and keeping other system p...The dynamical behaviour of the one-dimensional complex Ginzburg-Landau equation (CGLE) with finite system size L is investigated, based on numerical simulations. By varying the system size and keeping other system parameters in the defect turbulence region (defect turbulence in large L limit), a number of intermittencies new for the CGLE system are observed in the processes of pattern formations and transitions while the system dynamics varies from a homogeneous periodic oscillation to strong defect turbulence.展开更多
In this paper, the (l+l)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity- time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetr...In this paper, the (l+l)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity- time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetric potential are less reported analytically, the analytic solutions for the CGL equation are obtained with the bilinear method in this paper. Via the derived solutions, some soliton structures are presented with corresponding parameters, and the influences of them are analyzed and studied. The single-soliton structure is numerically verified, and its stability is analyzed against additive and multiplicative noises. In particular, we study the soliton dynamics under the impact of the PT-symmetric potential. Results show that the PT-symmetric potential plays an important role for obtaining soliton structures in ultrafast optics, and we can design fiber lasers and all-optical switches depending on the different amplitudes of soliton-like structures.展开更多
We prove the existence of a uniform initial datum whose solution decays, in var- ious Lp spaces, at different rates along different time sequences going to infinity, for complex Ginzburg-Landau equation on RN, of vari...We prove the existence of a uniform initial datum whose solution decays, in var- ious Lp spaces, at different rates along different time sequences going to infinity, for complex Ginzburg-Landau equation on RN, of various parameters θ and γ.展开更多
The solution of the real Ginzburg-Landau (GL) equation with a time-periodic coefficient is obtained in the form of a series, with assured convergence, using the computer-assisted ‘Homotopy Analysis Method’ (HAM) pro...The solution of the real Ginzburg-Landau (GL) equation with a time-periodic coefficient is obtained in the form of a series, with assured convergence, using the computer-assisted ‘Homotopy Analysis Method’ (HAM) propounded by Liao [1]. The formulation has been kept quite general to keep open the possibility of obtaining the solution of the GL equation for different continua as limiting cases of the present study. New ideas have been added and clear explanations are provided in the paper to the existing concepts in HAM. The method can easily be extended to solve complex GL equation, system of GL equations or even the GL equations with a diffusion term, each having a time-periodic coefficient. The necessary code in Mathematica that implements the HAM for the current problem is appended to the paper for use by the readers.展开更多
The complex Ginzburg-Landau equation (CGLE) has been used to describe the travelling wave behaviour in reaction-diffusion (RD) systems. We argue that this description is valid only when the RD system is close to t...The complex Ginzburg-Landau equation (CGLE) has been used to describe the travelling wave behaviour in reaction-diffusion (RD) systems. We argue that this description is valid only when the RD system is close to the Hopf bifurcation, and is not valid when a RD system is away from the onset. To test this, we study spirals and anti-spirals in the chlorite-iodide-malonic acid (CIMA) reaction and the corresponding OGLE. Numerical simulations confirm that the OGLE can only be applied to the CIMA reaction when it is very near the Hopf onset.展开更多
Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative an...Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative and the square norm of partial derivatives were obtained. Then the existence of global weak solution of inhomogeneous initial-boundary value problem of Ginzburg-Landau equations was proved by the method of approximation technique and a priori estimates and making limit.展开更多
In this paper, it is proved that for any given d non-degenerate local minimum points of the renormalized energy of weighted Ginzburg-Landau eqautions, one can find solutions to the Ginzburg-Landau equations whose vort...In this paper, it is proved that for any given d non-degenerate local minimum points of the renormalized energy of weighted Ginzburg-Landau eqautions, one can find solutions to the Ginzburg-Landau equations whose vortices tend to these d points. This provides the connections between solutions of a class of Ginzburg-Landau equations with weight and minimizers of the renormalized energy.展开更多
In this survey paper, we firstly review some existence aspects of Lichnerowicz equation and Ginzburg-Landau equations. We then discuss the uniform bounds for both equations in Rn. In the last part of this report, we c...In this survey paper, we firstly review some existence aspects of Lichnerowicz equation and Ginzburg-Landau equations. We then discuss the uniform bounds for both equations in Rn. In the last part of this report, we consider the Liouville type theorems for Lichnerowicz equation and Ginzburg-Landau equations in Rn via two approaches from the use of maximum principle and the monotonicity展开更多
In this paper I access the degree of approximation of known symbolic approach to solving of Ginzburg-Landau (GL) equations using variational method and a concept of vortex lattice with circular unit cells, refine it i...In this paper I access the degree of approximation of known symbolic approach to solving of Ginzburg-Landau (GL) equations using variational method and a concept of vortex lattice with circular unit cells, refine it in a clear and concise way, identify and eliminate the errors. Also, I will improve its accuracy by providing for the first time precise dependencies of the variational parameters;correct and calculate magnetisation, compare it with the one calculated numerically and conclude they agree within 98.5% or better for any value of the GL parameter k and at magnetic field , which is good basis for many engineering applications. As a result, a theoretical tool is developed using known symbolic solutions of GL equations with accuracy surpassing that of any other known symbolic solution and approaching that of numerical one.展开更多
基金Project supported by the Key Project of the Educational Department of Hunan Province of China (Grant No. 04A058)the General Project of the Educational Department of Hunan Province of China (Grant No. 07C754)
文摘By using the three-dimensional complex Ginzburg--Landau equation with cubic--quintic nonlinearity, this paper numerically investigates the interactions between optical bullets with different velocities in a dissipative system. The results reveal an abundance of interesting behaviours relating to the velocities of bullets: merging of the optical bullets into a single one at small velocities; periodic collisions at large velocities and disappearance of two bullets after several collisions in an intermediate region of velocity. Finally, it also reports that an extra bullet derives from the collision of optical bullets when optical bullets are at small velocities but with high energies.
文摘The wave propagation in the one-dimensional complex Ginzbur-Landau equation (CGLE) is studied by considering a wave source at the system boundary. A special propagation region, which is an island-shaped zone surrounded by the defect turbulence in the system parameter space, is observed in our numerical experiment. The wave signal spreads in the whole space with a novel amplitude wave pattern in the area. The relevant factors of the pattern formation, such as the wave speed, the maximum propagating distance and the oscillatory frequency, are studied in detail. The stability and the generality of the region are testified by adopting various initial conditions. This finding of the amplitude pattern extends the wave propagation region in the parameter space and presents a new signal transmission mode, and is therefore expected to be of much importance.
基金supported by the National Natural Science Foundation of China(10471050)the National 973 Project of China (2006CB805902)+1 种基金University Special Research Fund for Ph.DProgram (20060574002)Guangdong Provincial Natural Science Foundation (7005795, 031495)
文摘In this article, using coordinate transformation and Gronwall inequality, we study the vortex motion law of the anisotropic Cinzburg-Landau equation in a smooth bounded domain Ω (R^2,that is ,Эtuε=j,k=1∑2(ajkЭxkuε)xj+ε^2^-b(x)(1-|uε|^2)uε,x∈Ω,and conclude that each vortex,bj(t)(j=1,2,…,N)satisfies dt^-dbj(t)=-(a(bj(t))^-a1k(bj(t))Эxka(bj(t)),a(aj(t))^-a2k(bj(t))Эxka(bj(t))),where a(x)=√a11a22-a12^2. We prove that all the vortices are pinned together to the critical points of a(x). Furthermore, we prove that these critical points can not be the maximum points.
基金supported by the National Natural Science Foundation of China (Nos. 10772147 and10632030)the Ph. D. Program Foundation of Ministry of Education of China (No. 20070699028)+2 种基金the Natural Science Foundation of Shaanxi Province of China (No. 2006A07)the Open Foundationof State Key Laboratory of Structural Analysis of Industrial Equipment (No. GZ0802)the Foundation for Fundamental Research of Northwestern Polytechnical University
文摘Nonlinear wave equations have been extensively investigated in the last sev- eral decades. The Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, is studied in this paper based on the multi-symplectic theory in the Hamilton space. The multi-symplectic Runge-Kutta method is reviewed, and a semi-implicit scheme with certain discrete conservation laws is constructed to solve the first-order partial differential equations (PDEs) derived from the Landau-Ginzburg-Higgs equation. The numerical re- sults for the soliton solution of the Landau-Ginzburg-Higgs equation are reported, showing that the multi-symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors.
文摘By the interpolating inequality and a priori estimates in the weighted space,the existence of the global solutions for the Ginzburg-Landau equation coupled with the BBM equation in an unbounded domain is considered, and the existence of the maximal attractor is obtained.
基金supported by the National Natural Science Foundation of China (No. 10661002)the NaturalScience Foundation of Guangxi (No. 0832065)the Excellent Talents Fund of Guangxi (No. 0825)
文摘The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0.
基金supported by the National Natural Science Foundation of China(11571283)supported by Natural Science Foundation of Guizhou Province
文摘A new concept of an equi-attractor is introduced, and defined by the minimal compact set that attracts bounded sets uniformly in the past, for a non-autonomous dynam- ical system. It is shown that the compact equi-attraction implies the backward compactness of a pullback attractor. Also, an eventually equi-continuous and strongly bounded process has an equi-attractor if and only if it is strongly point dissipative and strongly asymptotically compact. Those results primely strengthen the known existence result of a backward bounded pullback attractor in the literature. Finally, the theoretical criteria are applied to prove the existence of both equi-attractor and backward compact attractor for a Ginzburg-Landau equation with some varying coefficients and a backward tempered external force.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. JUSRP211A21)the National Natural Science Foundation of China (Grant No. 11002061)
文摘In this paper, the generalized synchronization of two unidirectionally coupled Ginzburg Landau equations is studied theoretically. It is demonstrated that the drive-response system has bounded attraction domain and compact attractors. It is derived that the correction equation has asymptotically stable zero solutions under certain conditions and that the sufficient conditions for smooth generalized synchronization and Holder continuous generalized synchronization exist in the coupling system. Numerical result analysis shows the correctness of theory.
基金the National Natural Science Foundation of China(Grant Nos.11072117 and 61074142)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6110007)+3 种基金the Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Z201119278)the Natural Science Foundation of Ningbo,China(Grant Nos.2012A610152 and 2012A610038)the K.C.Wong Magna Fund in Ningbo University,Chinathe Research Grant Council,Government of the Hong Kong Administrative Region,China(Grant Nos.CityU9041370 and CityU9041499)
文摘A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.
基金Project supported by grants from the Hong Kong Research Grants Council (RGC) and Hong Kong Baptist University Faculty Research Grants (FRG)partially supported by the National Natural Science Foundation of China (Grant No. 10575016)Nonlinear Science Project of China
文摘The dynamical behaviour of the one-dimensional complex Ginzburg-Landau equation (CGLE) with finite system size L is investigated, based on numerical simulations. By varying the system size and keeping other system parameters in the defect turbulence region (defect turbulence in large L limit), a number of intermittencies new for the CGLE system are observed in the processes of pattern formations and transitions while the system dynamics varies from a homogeneous periodic oscillation to strong defect turbulence.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674036)the Beijing Youth Top-notch Talent Support Program,China(Grant No.2017000026833ZK08)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)(Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
文摘In this paper, the (l+l)-dimensional variable-coefficient complex Ginzburg-Landau (CGL) equation with a parity- time (PT) symmetric potential U(x) is investigated. Although the CGL equations with a PT-symmetric potential are less reported analytically, the analytic solutions for the CGL equation are obtained with the bilinear method in this paper. Via the derived solutions, some soliton structures are presented with corresponding parameters, and the influences of them are analyzed and studied. The single-soliton structure is numerically verified, and its stability is analyzed against additive and multiplicative noises. In particular, we study the soliton dynamics under the impact of the PT-symmetric potential. Results show that the PT-symmetric potential plays an important role for obtaining soliton structures in ultrafast optics, and we can design fiber lasers and all-optical switches depending on the different amplitudes of soliton-like structures.
基金Supported by NSFC(11271322,11271105)ZJNSF(LQ14A010011)
文摘We prove the existence of a uniform initial datum whose solution decays, in var- ious Lp spaces, at different rates along different time sequences going to infinity, for complex Ginzburg-Landau equation on RN, of various parameters θ and γ.
文摘The solution of the real Ginzburg-Landau (GL) equation with a time-periodic coefficient is obtained in the form of a series, with assured convergence, using the computer-assisted ‘Homotopy Analysis Method’ (HAM) propounded by Liao [1]. The formulation has been kept quite general to keep open the possibility of obtaining the solution of the GL equation for different continua as limiting cases of the present study. New ideas have been added and clear explanations are provided in the paper to the existing concepts in HAM. The method can easily be extended to solve complex GL equation, system of GL equations or even the GL equations with a diffusion term, each having a time-periodic coefficient. The necessary code in Mathematica that implements the HAM for the current problem is appended to the paper for use by the readers.
基金Project supported by the National Natural Science Foundation of China (Grant No 10274003) and the Department of Science and Technology of China.Acknowledgement We thank Cheng X, Wang C and Wang S for helpful discussion.
文摘The complex Ginzburg-Landau equation (CGLE) has been used to describe the travelling wave behaviour in reaction-diffusion (RD) systems. We argue that this description is valid only when the RD system is close to the Hopf bifurcation, and is not valid when a RD system is away from the onset. To test this, we study spirals and anti-spirals in the chlorite-iodide-malonic acid (CIMA) reaction and the corresponding OGLE. Numerical simulations confirm that the OGLE can only be applied to the CIMA reaction when it is very near the Hopf onset.
文摘Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative and the square norm of partial derivatives were obtained. Then the existence of global weak solution of inhomogeneous initial-boundary value problem of Ginzburg-Landau equations was proved by the method of approximation technique and a priori estimates and making limit.
基金The second author is partially supported by the National Natural Science Foundation of China (10471050)Guangdong Provincial Natural Science Foundation(031495)National 973 Project(2006CB805902).
文摘In this paper, it is proved that for any given d non-degenerate local minimum points of the renormalized energy of weighted Ginzburg-Landau eqautions, one can find solutions to the Ginzburg-Landau equations whose vortices tend to these d points. This provides the connections between solutions of a class of Ginzburg-Landau equations with weight and minimizers of the renormalized energy.
文摘In this survey paper, we firstly review some existence aspects of Lichnerowicz equation and Ginzburg-Landau equations. We then discuss the uniform bounds for both equations in Rn. In the last part of this report, we consider the Liouville type theorems for Lichnerowicz equation and Ginzburg-Landau equations in Rn via two approaches from the use of maximum principle and the monotonicity
文摘In this paper I access the degree of approximation of known symbolic approach to solving of Ginzburg-Landau (GL) equations using variational method and a concept of vortex lattice with circular unit cells, refine it in a clear and concise way, identify and eliminate the errors. Also, I will improve its accuracy by providing for the first time precise dependencies of the variational parameters;correct and calculate magnetisation, compare it with the one calculated numerically and conclude they agree within 98.5% or better for any value of the GL parameter k and at magnetic field , which is good basis for many engineering applications. As a result, a theoretical tool is developed using known symbolic solutions of GL equations with accuracy surpassing that of any other known symbolic solution and approaching that of numerical one.