In this paper, the existence of global attractor for 3-D complex Ginzburg Landau equation is considered. By a decomposition of solution operator, it is shown that the global attractor .Ai in Hi(Ω) is actually equal...In this paper, the existence of global attractor for 3-D complex Ginzburg Landau equation is considered. By a decomposition of solution operator, it is shown that the global attractor .Ai in Hi(Ω) is actually equal to a global attractor Aj in HJ (Ω) (i ≠j, i, j = 1, 2, .. m).展开更多
We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover.First,we prove that the ...We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover.First,we prove that the initial boundary value problem generates a strongly continuous semigroup on a suitable phase-space which possesses a global attractor.Then we establish the existence of an exponential attractor.As a consequence,we show that the global attractor is of finite fractal dimension.展开更多
In this paper, we mainly use operator decomposition technique to prove the global attractors which in ?for the Kirchhoff wave equation with strong damping and critical nonlinearities, are also bounded in .
This paper addresses the regularity and finite dimensionality of the global attractor for the plate equation on the unbounded domain. The existence of the attractor in the phase space has been established in an earlie...This paper addresses the regularity and finite dimensionality of the global attractor for the plate equation on the unbounded domain. The existence of the attractor in the phase space has been established in an earlier work of the author. It is shown that the attractor is actually a bounded set of the phase space and has finite fractal dimensionality.展开更多
In this paper, we consider a derivative Ginzburg-Landau-type equation with periodic initial-value condition in three-dimensional spaces. Sufficient conditions for existence and uniqueness of a global solution are obta...In this paper, we consider a derivative Ginzburg-Landau-type equation with periodic initial-value condition in three-dimensional spaces. Sufficient conditions for existence and uniqueness of a global solution are obtained by uniform a priori estimates of the solution. Furthermore, the existence of a global attractor and an exponential attractor with finite dimensions are proved.展开更多
In this paper,we establish the global fast dynamics for the derivative Ginzburg-Landau equation in two spatial dimensions.We show the squeezing property and the existence of fimte dimen- sional exponential attractors ...In this paper,we establish the global fast dynamics for the derivative Ginzburg-Landau equation in two spatial dimensions.We show the squeezing property and the existence of fimte dimen- sional exponential attractors for this equation展开更多
In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded doma...In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).展开更多
In this paper we study an initial boundary value problem for a generalized complex Ginzburg-Landau equation with two spatial variables (2D). Applying the notion of the ε-regular map we show the unique existence of ...In this paper we study an initial boundary value problem for a generalized complex Ginzburg-Landau equation with two spatial variables (2D). Applying the notion of the ε-regular map we show the unique existence of global solutions for initial data with low regularity and the existence of the global attractor.展开更多
This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the...This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.展开更多
In this article, regularity of the global attractor for atmospheric circulation equations with humidity effect is considered. It is proved that atmospheric circulation equations with humidity effect possess a global a...In this article, regularity of the global attractor for atmospheric circulation equations with humidity effect is considered. It is proved that atmospheric circulation equations with humidity effect possess a global attractor in H^k(?, R^4) for any k≥0, which attracts any bounded set of H^k(Ω, R^4) in the H^k-norm. The result is established by means of an iteration technique and regularity estimates for the linear semigroup of operator, together with a classical existence theorem of global attractor.展开更多
In the present paper, the existence of global attractor for dissipative Hamiltonian amplitude equation governing the modulated wave instabilities in E0 is considered. By a decomposition of solution operator, it is sho...In the present paper, the existence of global attractor for dissipative Hamiltonian amplitude equation governing the modulated wave instabilities in E0 is considered. By a decomposition of solution operator, it is shown that the global attractor in E0 is actually equal to a global attractor in E1.展开更多
In this paper, we prove that the 2D Navier-Stokes equations possess a global attractor in Hk(Ω,R2) for any k ≥ 1, which attracts any bounded set of Hk(Ω,R2) in the H^k-norm. The result is established by means o...In this paper, we prove that the 2D Navier-Stokes equations possess a global attractor in Hk(Ω,R2) for any k ≥ 1, which attracts any bounded set of Hk(Ω,R2) in the H^k-norm. The result is established by means of an iteration technique and regularity estimates for the linear semigroup of operator, together with a classical existence theorem of global attractor. This extends Ma, Wang and Zhong's conclusion.展开更多
The authors show the Gevrey class regularity of the solutions for the two-dimensional Newton-Boussinesq Equations. Based on this fact, an approximate inertial manifold for the system is constructed, which attracts ...The authors show the Gevrey class regularity of the solutions for the two-dimensional Newton-Boussinesq Equations. Based on this fact, an approximate inertial manifold for the system is constructed, which attracts all solutions to an exponentially thin neighborhood of it in a finite time.展开更多
This paper deals with the asymptotic behaviour of solutions for thegeneralized symmetric regularized long wave equations with dissipation term. We first show theexistence of global weak attractors for the periodic ini...This paper deals with the asymptotic behaviour of solutions for thegeneralized symmetric regularized long wave equations with dissipation term. We first show theexistence of global weak attractors for the periodic initial value problem of this equations in H^2x H^1. And then by an energy equation and an idea of Ghidaglia and Guo, we conclude that the globalweak attractor is actually the global strong attractor for S(t) in H^2 (Ω) x H^1 (Ω). The finitedimensionality of the global attractor is also established.展开更多
基金Supported by the NationalNatural Science Foundation of China(No.11061003)Guangxi Natural Science Foundation Grant(No.0832065)Guangxi excellent talents funded project(No.0825)
文摘In this paper, the existence of global attractor for 3-D complex Ginzburg Landau equation is considered. By a decomposition of solution operator, it is shown that the global attractor .Ai in Hi(Ω) is actually equal to a global attractor Aj in HJ (Ω) (i ≠j, i, j = 1, 2, .. m).
基金partially supported by National Natural Science Foundation of China (Grant No.11001058)Specialized Research Fund for the Doctoral Program of Higher Educationthe Fundamental Research Funds for the Central Universities
文摘We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover.First,we prove that the initial boundary value problem generates a strongly continuous semigroup on a suitable phase-space which possesses a global attractor.Then we establish the existence of an exponential attractor.As a consequence,we show that the global attractor is of finite fractal dimension.
文摘In this paper, we mainly use operator decomposition technique to prove the global attractors which in ?for the Kirchhoff wave equation with strong damping and critical nonlinearities, are also bounded in .
基金Project Supported by the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y200804289)the Natural Science Foundation of Ningbo City(No.2010A610102)the K.C.Wong Magna Fund in Ningbo University
文摘This paper addresses the regularity and finite dimensionality of the global attractor for the plate equation on the unbounded domain. The existence of the attractor in the phase space has been established in an earlier work of the author. It is shown that the attractor is actually a bounded set of the phase space and has finite fractal dimensionality.
基金the National Natural Science Foundation of China (Nos.10432010 and 10571010)
文摘In this paper, we consider a derivative Ginzburg-Landau-type equation with periodic initial-value condition in three-dimensional spaces. Sufficient conditions for existence and uniqueness of a global solution are obtained by uniform a priori estimates of the solution. Furthermore, the existence of a global attractor and an exponential attractor with finite dimensions are proved.
基金The author is supported by the Postdoctoral Foundation of China
文摘In this paper,we establish the global fast dynamics for the derivative Ginzburg-Landau equation in two spatial dimensions.We show the squeezing property and the existence of fimte dimen- sional exponential attractors for this equation
文摘In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).
基金This work is supported by National Natural Science Foundation of China under Grant nos, 10001013 and 10471047 and Natural Science Foundation of Guangdong Province of China under Grant no. 004020077.
文摘In this paper we study an initial boundary value problem for a generalized complex Ginzburg-Landau equation with two spatial variables (2D). Applying the notion of the ε-regular map we show the unique existence of global solutions for initial data with low regularity and the existence of the global attractor.
文摘This paper is devoted to the long time behavior of the solution to the initial boundary value problems for a class of the Kirchhoff wave equations with nonlinear strongly damped terms: . Firstly, in order to prove the smoothing effect of the solution, we make efficient use of the analytic property of the semigroup generated by the principal operator of the equation in the phase space. Then we obtain the regularity of the global attractor and construct the approximate inertial manifold of the equation. Finally, we prove that arbitrary trajectory of the Kirchhoff wave equations goes into a small neighbourhood of the approximate inertial manifold after large time.
基金Supported by the National Natural Science Foundation of China(No.11701399)
文摘In this article, regularity of the global attractor for atmospheric circulation equations with humidity effect is considered. It is proved that atmospheric circulation equations with humidity effect possess a global attractor in H^k(?, R^4) for any k≥0, which attracts any bounded set of H^k(Ω, R^4) in the H^k-norm. The result is established by means of an iteration technique and regularity estimates for the linear semigroup of operator, together with a classical existence theorem of global attractor.
基金Supported by the National Natural Science Foundation of China (No.19861004)
文摘In the present paper, the existence of global attractor for dissipative Hamiltonian amplitude equation governing the modulated wave instabilities in E0 is considered. By a decomposition of solution operator, it is shown that the global attractor in E0 is actually equal to a global attractor in E1.
基金Supported by the NSF of China (Nos. 10571142, 10771167)
文摘In this paper, we prove that the 2D Navier-Stokes equations possess a global attractor in Hk(Ω,R2) for any k ≥ 1, which attracts any bounded set of Hk(Ω,R2) in the H^k-norm. The result is established by means of an iteration technique and regularity estimates for the linear semigroup of operator, together with a classical existence theorem of global attractor. This extends Ma, Wang and Zhong's conclusion.
文摘The authors show the Gevrey class regularity of the solutions for the two-dimensional Newton-Boussinesq Equations. Based on this fact, an approximate inertial manifold for the system is constructed, which attracts all solutions to an exponentially thin neighborhood of it in a finite time.
基金This research is supported by the National Natural Science Foundation of China(Grant 10271034).
文摘This paper deals with the asymptotic behaviour of solutions for thegeneralized symmetric regularized long wave equations with dissipation term. We first show theexistence of global weak attractors for the periodic initial value problem of this equations in H^2x H^1. And then by an energy equation and an idea of Ghidaglia and Guo, we conclude that the globalweak attractor is actually the global strong attractor for S(t) in H^2 (Ω) x H^1 (Ω). The finitedimensionality of the global attractor is also established.