Adipose tissue is a promising target for treating obesity and metabolic diseases.However,pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient va...Adipose tissue is a promising target for treating obesity and metabolic diseases.However,pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization,especially in obese subjects.We have previously shown that during cold exposure,connexin43(Cx43)gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells.We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue.Using an adipose tissue-specific Cx43 overexpression mouse model,we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of theβ_(3)-adrenergic receptor agonist Mirabegron and FGF21.Additionally,combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy.In light of these findings,we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it.Thus,Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.展开更多
基金supported in part by a research grant from Novo Nordsik(USA,to Philipp E.Scherer)by NIH Grants(USA)R01-DK55758,R01-DK099110,R01-DK127274,R01DK131537 and P01-AG051459 to Philipp E.Scherer,NIH Grant R00-DK114498+4 种基金NIH Grant K99-AG068239 to Shangang ZhaoNIH Grant K01-DK125447 to Yu A.AnNIH grants R01 DK119169 and P01 DK119130-5830 to Kevin W.WilliamsUSDA ARS(cooperative agreement 309251000-062)to Yi ZhuAHA Career Development Award 855170(USA)to Qingzhang Zhu。
文摘Adipose tissue is a promising target for treating obesity and metabolic diseases.However,pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization,especially in obese subjects.We have previously shown that during cold exposure,connexin43(Cx43)gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells.We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue.Using an adipose tissue-specific Cx43 overexpression mouse model,we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of theβ_(3)-adrenergic receptor agonist Mirabegron and FGF21.Additionally,combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy.In light of these findings,we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it.Thus,Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.