As a solid reservoir, a glacier can regulate regional water resources. The annual net mass balance directly reflects the fluctuation of the glacier and climate variability. Based on 51 years of mass balance observatio...As a solid reservoir, a glacier can regulate regional water resources. The annual net mass balance directly reflects the fluctuation of the glacier and climate variability. Based on 51 years of mass balance observation data, the mass balance of Tianshan Mountains Urumqi Glacier No. 1 experienced a nine times positive balance fluctuation and nine times negative balance fluctuation. There were 35 and 16 negative and positive balance years, respectively. From 1996/97 to 2008/09, 12 consecutive negative balance years were observed at Tianshan Mountains Urumqi Glacier No. 1. These results demon- strate that the Urumqi Glacier No. 1 is experiencing a strong negative balance, and the strongest negative balance, -931 mm w.e. (mm water equivalent), during the observation period occurred in 2008. In addition, the cumulative mass balance reached 13,709 mm w.e. in 2008. However, in 2009, the mass balance was positive at 63 mm w.e. The equilibrium-line al- titude changes with the fluctuation in the mass balance, and the effective mass balance gradient is 7.4 mrn/m. In this paper, the headwaters of the Urumqi River were analyzed using meteorological data from 1958 to 2009, including the average seasonal temperature and precipitation. The results showed that the main factor associated with the mass balance variation of Glacier No. 1 is the fluctuation in the summer air temperature, followed by changes in the precipitation.展开更多
This paper is based on observed mass balance between East and West Branch of Urumqi Glacier No. l, meteorological data dur- ing 1988-2010, comparative studies the mass balance variations, and analyses the mass balance...This paper is based on observed mass balance between East and West Branch of Urumqi Glacier No. l, meteorological data dur- ing 1988-2010, comparative studies the mass balance variations, and analyses the mass balance sensitivity to climate change. Re- sults show that average mass balance of East and West Branch was -532 mm/a and 435 mm/a, cumulative mass balance was 12,227 mm (ice thinned by 13.6 m) and -10,001 mm (ice thinned by 11.1 m), respectively, and mass loss of East Branch was 97 mm/a larger than West Branch. The East and West Branch ELA (equilibrium line altitude) ascended about 176 m and 154 m, analysis shows the steady-state ELA0 was 3,942 m a.s.1, and 4,011 m a.s.1., and when East and West Branch mass balance de- creased by 100 ram, ELA ascended 20 m and 23 m, respectively. The AAR (accumulation area ratio) of East and West Branch presented an obviously decreasing trend of 34.5% and 23%, equilibrium-state AAR0 was 65% and 66%, when East and West Branch mass balance increased by 100 mm, AAR ascended 4.6% and 4.2%, respectively. Glacier mass balance was sensitive to change of net ablation, net ablation of East and West Branch increased 10x 104 m3, and mass balance decreased 110 mm and 214 mm, respectively. By analyzing mass balance sensitivity to climate change, results suggest that East and West Branch mass bal- ance decreased (increased) 463 mm and 388 mm when ablation period temperature increased (decreased) by 1 ~C, East and West Branch mass balance increased (decreased) 140 mm and 158 mm when annual precipitation increased (decreased) by 100 mm, and sensitivity of East Branch mass balance to climate change was more intense than that of West Branch.展开更多
The degree-day factor (DDF) is a key parameter in the degree-day model, and the varia- tions in DDF have the significant effects on the accuracy of glacier mass balance modeling. In this study, Glacier No. 1 at the ...The degree-day factor (DDF) is a key parameter in the degree-day model, and the varia- tions in DDF have the significant effects on the accuracy of glacier mass balance modeling. In this study, Glacier No. 1 at the headwaters of Uriimqi (-~O)~Z~=) River in China was selected, and the estimated DDF by stakes-observed mass balance and meteorological data from 1983-2006 was used to analyze the spatio-temporal variability of DDF and its influencing factors, such as climate condition, surface fea- ture, and topography. Then, the ablations from the 1980s to 2000s were estimated using the degree-day modei, and the ablation change from the 1980s to 2000s was divided into the changes caused by climate change and by the ice-surface feature. The following results were obtained: (1) The annual change in DDF for snow was not obvious, whereas that for ice increased, and the increasing trend on the lower glacier was more significant than that on the upper glacier because of decreased albedo caused by vari- ations in ice-surface feature; (2) The DDF for ice clearly decreased with altitude by approximately 0.046 and 0.043 mm.'C-l-d-Lm-1 on the east and west branches, respectively, and the DDF of the west branch was obviously larger than that of the east branch in the same altitude belt; (3) the changes in mass balance in the summers from the 1980s to 2000s were -391 and -467 mm on the east and west branches, respectively. Among the total changes, the components directly caused by climate change were -193 and -198 mm, whereas those indirectly caused by ice-surface feature change were -198 and -269 mm on the east and west branches, respectively.展开更多
The aim of this study is to investigate the impact of temperature trend on glacier-mass balance, snow density, snowmelt, snow depth and runoff by using observations of nine glacier stations that covered most of the Ch...The aim of this study is to investigate the impact of temperature trend on glacier-mass balance, snow density, snowmelt, snow depth and runoff by using observations of nine glacier stations that covered most of the China over the period of 1979-2013. Trend analysis showed an increasing trend of temperature on all of the selected stations. On an average, temperature was increasing at the rate of 0.46/10a. The increasing trend of temperature showed a negative relationship with annual glacier-mass balance on most of the stations and caused a decrease in annual balance. Results of Pearson’s correlation analysis showed a highly significant negative correlation between temperature and snow density (correlation coefficient (CC = -0.661 at 0.01 significance level). There was a significant positive correlation between temperature and snowmelt (CC = 0.532 at 0.01 significance level). There was a significant negative correlation between temperature and snow depth (correlation coefficient (CC = -0.342 at 0.05 significance level). Moreover, there was a significant positive correlation between temperature and runoff (CC = 0.586 at 0.01 significance level). Increasing trend of temperature caused an increasing trend of annual snowmelt and runoff anomaly% at the rate of 24.82/10a and 9.87/10a, respectively. On the other hand, a declining trend in annual snow density and snow depth anomaly% was found at a rate of -5.32/10a and -1.93/10a, respectively. We concluded that the snow density, snowmelt and runoff are significantly sensitive to temperature in China. This contribution has provided information for further understanding of glacier variation and its influencing factors.展开更多
Glacier mass balance is a key component of glacier monitoring programs. Information on the mass balance of Sawir Mountains is poor due to a dearth of in-situ measurements. This paper introduces the applicability of an...Glacier mass balance is a key component of glacier monitoring programs. Information on the mass balance of Sawir Mountains is poor due to a dearth of in-situ measurements. This paper introduces the applicability of an ultra-long-range terrestrial laser scanner(TLS) to monitor the mass balance of Muz Taw Glacier, Sawir Mountains, China. The Riegl VZ?-6000 TLS is exceptionally well-suited for measuring snowy and icy terrain. Here, we use TLS to create repeated high spatiotemporal resolution DEMs, focusing on the annual mass balance(June 2, 2015 to July 25, 2016). According to TLS-derived high spatial resolution point clouds, the front variation(glacier retreat) of Muz Taw Glacier was 9.3 m. The mean geodetic elevation change was 4.55 m at the ablation area. By comparing with glaciological measurements, the glaciological elevation change of individual stakes and the TLS-derived geodetic elevation change of corresponding points matched closely, and the calculated balance was-3.864±0.378 m w.e.. This data indicates that TLS provides accurate results and is therefore suitable to monitor mass balance evolution of Muz Taw Glacier.展开更多
Melt-albedo feedback on glaciers is recognized as important processes for understanding glacier behavior and its sensitivity to climate change.This study selected the Muz Taw Glacier in the Altai Mountains to investig...Melt-albedo feedback on glaciers is recognized as important processes for understanding glacier behavior and its sensitivity to climate change.This study selected the Muz Taw Glacier in the Altai Mountains to investigate the spatiotemporal variations in albedo and their linkages with mass balance,which will improve our knowledge of the recent acceleration of regional glacier shrinkage.Based on the Landsat-derived albedo,the spatial distribution of ablation-period albedo was characterized by a general increase with elevation,and significant east–west differences at the same elevation.The gap-filling MODIS values captured a nonsignificant negative trend of mean ablation-period albedo since 2000,with a total decrease of approximately 4.2%.From May to September,glacier-wide albedo exhibited pronounced V-shaped seasonal variability.A significant decrease in annual minimum albedo was found from 2000 to 2021,with the rate of approximately−0.30%yr−1 at the 99%confidence level.The bivariate relationship demonstrated that the change of ablation-period albedo explained 82%of the annual mass-balance variability.We applied the albedo method to estimate annual mass balance over the period 2000–2015.Combined with observed values,the average mass balance was−0.82±0.32 m w.e.yr−1 between 2000 and 2020,with accelerated mass loss.展开更多
The accumulation and ablation of a glacier directly reflect its mass income and wastage, and ice temperature indicates glacier's climatic and dynamic conditions. Glaciological studies at Baishui Glacier No.1 in Mt. Y...The accumulation and ablation of a glacier directly reflect its mass income and wastage, and ice temperature indicates glacier's climatic and dynamic conditions. Glaciological studies at Baishui Glacier No.1 in Mt. Yulong are important for estimating recent changes of the cryosphere in Hengduan Mountains. Increased glacier ablation and higher ice temperatures can cause the incidents of icefall. Therefore, it is important to conduct the study of glacier mass balance and ice temperature, but there are few studies in relation to glacier's mass balance and active-layer temperature in China's monsoonal temperate glacier region. Based on the field observations of mass balance and glacier temperature at Baishui Glacier No.1, its accumulation, ablation, net balance and near-surface ice temperature structure were analyzed and studied in this paper. Results showed that the accumulation period was ranged from October to the following mid-May, and the ablation period occurred from mid-May to October, suggesting that the ablation period of temperate glacier began about 15 days earlier than that of continental glaciers, while the accumulation period began about 15 days later. The glacier ablation rate was 6.47 cm d 1 at an elevation of 4600 m between June 23 and August 30, and it was 7.4 cm d 1 at 4800 m between June 26 and July 11 in 1982, moreover, they respectively increased to 9.2 cm d 1 and 10.8 cm d 1 in the corresponding period and altitude in 2009, indicating that glacier ablation has greatly intensified in the past years. The temperature of the main glacier body was close to melting point in summer, and it dropped from the glacier surface and reached a minimum value at a depth of 4-6 m in the ablation zone. The temperature then rose to around melting point with the depth increment. In winter, the ice temperature rose gradually with the increasing depth, and close to melting point at the depth of 10 m. Compared with the data from 1982, the glacier temperature has risen in the ablation zone in recent decades.展开更多
The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far.In the present study,using the snow cover model SNOWPACK,the effect of geotextile cover on the ene...The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far.In the present study,using the snow cover model SNOWPACK,the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No.1(Chinese Tien Shan)was simulated between July 12,2022 and August 31,2022.The mass changes and the energy fluxes with and without material cover were compared.The results indicated that the geotextile covering reduced glacier ablation by approximately 68%compared to the ablation in the uncovered regions.The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%.Thermal insulation of the geotextile reduced the sensible heat flux by 15%.In addition,the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux.This cooling effect reduced the energy available for ablation by 20%.Consequently,only 37%of the energy was used for melting compared to that used in the uncovered regions(67%).Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045-0.090 m reduced the ice loss by approximately 68%-72%,and a further increase in the thickness of the geotextile cover led to little improvements.A higher temperature and greater wind speed increased glacier ablation,although their effects were small.When the precipitation was set to zero,it led to a significantly increased melt.Overall,the geotextile effectively protected the glacier tongue from rapid melting,and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.展开更多
In order to verify the feasibility and stability of a degree-day model on simulating the long time series of glacier mass balance, we apply a degree-day model to simulate the mass balance of Urumqi Glacier No. 1 for t...In order to verify the feasibility and stability of a degree-day model on simulating the long time series of glacier mass balance, we apply a degree-day model to simulate the mass balance of Urumqi Glacier No. 1 for the period 1987/1988-2007/2008 based on temperature and precipitation data from a nearby climate station. The model is calibrated by simulating point measurements of mass bal- ance, mass balance profiles, and mean specific mass balance during 1987/1988-1996/1997. The opti- mized parameters are obtained by using a least square method to make the model fit the measured mass balance through the model calibration. The model validation (1997/1998-2007/2008) indicates that the modeled results are in good agreement with the observations. The static mass balance sensitiv- ity of Urumqi Glacier No. 1 is analyzed by computing the mass balance of the glacier for a temperature increase of 1℃, with and without a 5% precipitation increase, and the values for the east branch are -0.80 and -0.87 m w.e. a-1℃-1, respectively, and for the west branch, the values are -0.68 and -0.74 m w.e. a-1℃-1, respectively. Moreover, the analysis of the parameter stability indicates that the parame- ters in the model determined from the current climate condition can be applied in the prediction of the future mass balance changes for the glacier and provide a reference for extending the model to other small glaciers in western China.展开更多
In this paper the degree day mass balance model is applied to the sensitivity test of mass balance/ELA(equilibrium line altitude) to climate change of Glacier No.1 at Urumqi Riverhead, the Tianshan Mountains, Chin...In this paper the degree day mass balance model is applied to the sensitivity test of mass balance/ELA(equilibrium line altitude) to climate change of Glacier No.1 at Urumqi Riverhead, the Tianshan Mountains, China. The results demonstrate that the mass balance of Glacier No.1, which is of continental type and accumulates in warm seasons, is less sensitive than that of a maritime glacier. On Glacier No.1, air temperature rise of 1℃ or precipitation increase by 20% can cause the ELA shift 81 m up or 31 m down respectively. Air temperature and precipitation play the different roles in the mass balance formation, in which the mass balance hypsometry follows the temperature variations by the means of rotation against the elevation axis and it shifts in parallel with precipitation change. Assuming a future temperature rise of 2 ℃ the mass losing trend on Glacier No.1 can not be radically alleviated even if there is a precipitation increase by 30%.展开更多
The glaciers in the arid region of Northwest China are viewed as an independent system, and glacier variation and mass balance fluctuation since the Little Ice Age and in the recent decades are estimated. Based on the...The glaciers in the arid region of Northwest China are viewed as an independent system, and glacier variation and mass balance fluctuation since the Little Ice Age and in the recent decades are estimated. Based on the estimation, the threshold time of glacier runoff against the backgrounds of the current and future varying climate conditions is simulated.展开更多
Under the control of geographical environment and the influence ofmodified west air mass, the mass balance of glaciers in the Tianshan Mountains hascontinously decreased since the 1970s. However, the lake level has in...Under the control of geographical environment and the influence ofmodified west air mass, the mass balance of glaciers in the Tianshan Mountains hascontinously decreased since the 1970s. However, the lake level has increased gradually duo to the increase of precipitation. The interaction between temperature andprecipitation resulted in a normal and slightly more total amount of water resources inthe areas of the Tianshan Mountains. It is estimated that this climatic trend will lastto the early stage of the next century.展开更多
为认识全球变暖背景下中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应,以天山乌鲁木齐河源1号冰川和藏东南帕隆94号冰川为例,结合大西沟与察隅站气象资料,对1980—2015年两条冰川的物质平衡变化特征及差异进行了分析。结果...为认识全球变暖背景下中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应,以天山乌鲁木齐河源1号冰川和藏东南帕隆94号冰川为例,结合大西沟与察隅站气象资料,对1980—2015年两条冰川的物质平衡变化特征及差异进行了分析。结果表明:36 a来乌源1号冰川与帕隆94号冰川物质平衡总体上均呈下降趋势,累积物质平衡达-17 102 mm w. e.与-8 159 mm w. e.,相当于冰川厚度减薄19 m与9. 01 m,且分别于1996、2004年左右发生突变。同期两条冰川所处区域年均温呈显著上升趋势,而降水量却表现出不同的变化态势;二者年内气温分配相仿,但降水分配差异较大。初步分析认为气温上升是导致乌源1号冰川与帕隆94号冰川物质亏损的主要原因,冰川区气温和降水变化幅度的差异和地性因子(坡度、冰川面积)的不同使得乌源1号冰川对气候变化响应的敏感性高于帕隆94号冰川,由于目前海洋性冰川物质平衡监测时段相对较短,为深入研究中国西部冰川物质平衡变化及过程仍需加强对冰川的持续观测。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41001040 and J0630966)the Foundation for Excellent Youth Scholars of CAREERI (No. 51Y084911)+1 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-EW-311)the National Basic Research Program of China (2010CB951003)
文摘As a solid reservoir, a glacier can regulate regional water resources. The annual net mass balance directly reflects the fluctuation of the glacier and climate variability. Based on 51 years of mass balance observation data, the mass balance of Tianshan Mountains Urumqi Glacier No. 1 experienced a nine times positive balance fluctuation and nine times negative balance fluctuation. There were 35 and 16 negative and positive balance years, respectively. From 1996/97 to 2008/09, 12 consecutive negative balance years were observed at Tianshan Mountains Urumqi Glacier No. 1. These results demon- strate that the Urumqi Glacier No. 1 is experiencing a strong negative balance, and the strongest negative balance, -931 mm w.e. (mm water equivalent), during the observation period occurred in 2008. In addition, the cumulative mass balance reached 13,709 mm w.e. in 2008. However, in 2009, the mass balance was positive at 63 mm w.e. The equilibrium-line al- titude changes with the fluctuation in the mass balance, and the effective mass balance gradient is 7.4 mrn/m. In this paper, the headwaters of the Urumqi River were analyzed using meteorological data from 1958 to 2009, including the average seasonal temperature and precipitation. The results showed that the main factor associated with the mass balance variation of Glacier No. 1 is the fluctuation in the summer air temperature, followed by changes in the precipitation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41001040 and J0630966)the Foundation for Excellent Youth Scholars of CAREERI (No. 51Y084911)the National Basic Research Program of China (2010CB951003)
文摘This paper is based on observed mass balance between East and West Branch of Urumqi Glacier No. l, meteorological data dur- ing 1988-2010, comparative studies the mass balance variations, and analyses the mass balance sensitivity to climate change. Re- sults show that average mass balance of East and West Branch was -532 mm/a and 435 mm/a, cumulative mass balance was 12,227 mm (ice thinned by 13.6 m) and -10,001 mm (ice thinned by 11.1 m), respectively, and mass loss of East Branch was 97 mm/a larger than West Branch. The East and West Branch ELA (equilibrium line altitude) ascended about 176 m and 154 m, analysis shows the steady-state ELA0 was 3,942 m a.s.1, and 4,011 m a.s.1., and when East and West Branch mass balance de- creased by 100 ram, ELA ascended 20 m and 23 m, respectively. The AAR (accumulation area ratio) of East and West Branch presented an obviously decreasing trend of 34.5% and 23%, equilibrium-state AAR0 was 65% and 66%, when East and West Branch mass balance increased by 100 mm, AAR ascended 4.6% and 4.2%, respectively. Glacier mass balance was sensitive to change of net ablation, net ablation of East and West Branch increased 10x 104 m3, and mass balance decreased 110 mm and 214 mm, respectively. By analyzing mass balance sensitivity to climate change, results suggest that East and West Branch mass bal- ance decreased (increased) 463 mm and 388 mm when ablation period temperature increased (decreased) by 1 ~C, East and West Branch mass balance increased (decreased) 140 mm and 158 mm when annual precipitation increased (decreased) by 100 mm, and sensitivity of East Branch mass balance to climate change was more intense than that of West Branch.
基金supported by the National Natural Science Foundation of China(Nos.41030527 and 41130368)Global Change Research Program of China(No.2010CB951404)Hundred Talents Program of the Chi-nese Academy of Sciences
文摘The degree-day factor (DDF) is a key parameter in the degree-day model, and the varia- tions in DDF have the significant effects on the accuracy of glacier mass balance modeling. In this study, Glacier No. 1 at the headwaters of Uriimqi (-~O)~Z~=) River in China was selected, and the estimated DDF by stakes-observed mass balance and meteorological data from 1983-2006 was used to analyze the spatio-temporal variability of DDF and its influencing factors, such as climate condition, surface fea- ture, and topography. Then, the ablations from the 1980s to 2000s were estimated using the degree-day modei, and the ablation change from the 1980s to 2000s was divided into the changes caused by climate change and by the ice-surface feature. The following results were obtained: (1) The annual change in DDF for snow was not obvious, whereas that for ice increased, and the increasing trend on the lower glacier was more significant than that on the upper glacier because of decreased albedo caused by vari- ations in ice-surface feature; (2) The DDF for ice clearly decreased with altitude by approximately 0.046 and 0.043 mm.'C-l-d-Lm-1 on the east and west branches, respectively, and the DDF of the west branch was obviously larger than that of the east branch in the same altitude belt; (3) the changes in mass balance in the summers from the 1980s to 2000s were -391 and -467 mm on the east and west branches, respectively. Among the total changes, the components directly caused by climate change were -193 and -198 mm, whereas those indirectly caused by ice-surface feature change were -198 and -269 mm on the east and west branches, respectively.
文摘The aim of this study is to investigate the impact of temperature trend on glacier-mass balance, snow density, snowmelt, snow depth and runoff by using observations of nine glacier stations that covered most of the China over the period of 1979-2013. Trend analysis showed an increasing trend of temperature on all of the selected stations. On an average, temperature was increasing at the rate of 0.46/10a. The increasing trend of temperature showed a negative relationship with annual glacier-mass balance on most of the stations and caused a decrease in annual balance. Results of Pearson’s correlation analysis showed a highly significant negative correlation between temperature and snow density (correlation coefficient (CC = -0.661 at 0.01 significance level). There was a significant positive correlation between temperature and snowmelt (CC = 0.532 at 0.01 significance level). There was a significant negative correlation between temperature and snow depth (correlation coefficient (CC = -0.342 at 0.05 significance level). Moreover, there was a significant positive correlation between temperature and runoff (CC = 0.586 at 0.01 significance level). Increasing trend of temperature caused an increasing trend of annual snowmelt and runoff anomaly% at the rate of 24.82/10a and 9.87/10a, respectively. On the other hand, a declining trend in annual snow density and snow depth anomaly% was found at a rate of -5.32/10a and -1.93/10a, respectively. We concluded that the snow density, snowmelt and runoff are significantly sensitive to temperature in China. This contribution has provided information for further understanding of glacier variation and its influencing factors.
基金supported by the National Natural Science Foundation of China(41601076,41471058 nd 91425303)the"Light of West China"program for Talent Introduction of Chinese Academy
文摘Glacier mass balance is a key component of glacier monitoring programs. Information on the mass balance of Sawir Mountains is poor due to a dearth of in-situ measurements. This paper introduces the applicability of an ultra-long-range terrestrial laser scanner(TLS) to monitor the mass balance of Muz Taw Glacier, Sawir Mountains, China. The Riegl VZ?-6000 TLS is exceptionally well-suited for measuring snowy and icy terrain. Here, we use TLS to create repeated high spatiotemporal resolution DEMs, focusing on the annual mass balance(June 2, 2015 to July 25, 2016). According to TLS-derived high spatial resolution point clouds, the front variation(glacier retreat) of Muz Taw Glacier was 9.3 m. The mean geodetic elevation change was 4.55 m at the ablation area. By comparing with glaciological measurements, the glaciological elevation change of individual stakes and the TLS-derived geodetic elevation change of corresponding points matched closely, and the calculated balance was-3.864±0.378 m w.e.. This data indicates that TLS provides accurate results and is therefore suitable to monitor mass balance evolution of Muz Taw Glacier.
基金supported by the National Natural Science Foundation of China[grant number 42001066]the Open-end Foundation for National Cryosphere Desert Data Center[grant number 20D05]+2 种基金the Foundation for Excellent Youth Scholars of NIEER,CAS[grant number FEYS2019003]State Key Laboratory of Cryospheric Science[grant number SKLCS-ZZ-2022]the Third Comprehensive Scientific Expedition of Xinjiang Uyghur Autonomous Region[grant number 2022xjkk0802,2022xjkk0701].
文摘Melt-albedo feedback on glaciers is recognized as important processes for understanding glacier behavior and its sensitivity to climate change.This study selected the Muz Taw Glacier in the Altai Mountains to investigate the spatiotemporal variations in albedo and their linkages with mass balance,which will improve our knowledge of the recent acceleration of regional glacier shrinkage.Based on the Landsat-derived albedo,the spatial distribution of ablation-period albedo was characterized by a general increase with elevation,and significant east–west differences at the same elevation.The gap-filling MODIS values captured a nonsignificant negative trend of mean ablation-period albedo since 2000,with a total decrease of approximately 4.2%.From May to September,glacier-wide albedo exhibited pronounced V-shaped seasonal variability.A significant decrease in annual minimum albedo was found from 2000 to 2021,with the rate of approximately−0.30%yr−1 at the 99%confidence level.The bivariate relationship demonstrated that the change of ablation-period albedo explained 82%of the annual mass-balance variability.We applied the albedo method to estimate annual mass balance over the period 2000–2015.Combined with observed values,the average mass balance was−0.82±0.32 m w.e.yr−1 between 2000 and 2020,with accelerated mass loss.
基金National Natural Science Foundation of China,No.40971019No.41273010 The Foundation from the State Key Laboratory of Cryosphere Science,No.SKLCS-ZZ-2012-01-02
文摘The accumulation and ablation of a glacier directly reflect its mass income and wastage, and ice temperature indicates glacier's climatic and dynamic conditions. Glaciological studies at Baishui Glacier No.1 in Mt. Yulong are important for estimating recent changes of the cryosphere in Hengduan Mountains. Increased glacier ablation and higher ice temperatures can cause the incidents of icefall. Therefore, it is important to conduct the study of glacier mass balance and ice temperature, but there are few studies in relation to glacier's mass balance and active-layer temperature in China's monsoonal temperate glacier region. Based on the field observations of mass balance and glacier temperature at Baishui Glacier No.1, its accumulation, ablation, net balance and near-surface ice temperature structure were analyzed and studied in this paper. Results showed that the accumulation period was ranged from October to the following mid-May, and the ablation period occurred from mid-May to October, suggesting that the ablation period of temperate glacier began about 15 days earlier than that of continental glaciers, while the accumulation period began about 15 days later. The glacier ablation rate was 6.47 cm d 1 at an elevation of 4600 m between June 23 and August 30, and it was 7.4 cm d 1 at 4800 m between June 26 and July 11 in 1982, moreover, they respectively increased to 9.2 cm d 1 and 10.8 cm d 1 in the corresponding period and altitude in 2009, indicating that glacier ablation has greatly intensified in the past years. The temperature of the main glacier body was close to melting point in summer, and it dropped from the glacier surface and reached a minimum value at a depth of 4-6 m in the ablation zone. The temperature then rose to around melting point with the depth increment. In winter, the ice temperature rose gradually with the increasing depth, and close to melting point at the depth of 10 m. Compared with the data from 1982, the glacier temperature has risen in the ablation zone in recent decades.
基金supported by the Gansu Provincial Science and Technology Program (22ZD6FA005)the State Key Laboratory of Cryospheric Science (SKLCS-ZZ-2022)+2 种基金the National Key Research and Development Program of China (2020YFF0304400)the National Natural Science Foundation of China (42001066)the National Natural Science Foundation of China (42001067).
文摘The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far.In the present study,using the snow cover model SNOWPACK,the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No.1(Chinese Tien Shan)was simulated between July 12,2022 and August 31,2022.The mass changes and the energy fluxes with and without material cover were compared.The results indicated that the geotextile covering reduced glacier ablation by approximately 68%compared to the ablation in the uncovered regions.The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%.Thermal insulation of the geotextile reduced the sensible heat flux by 15%.In addition,the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux.This cooling effect reduced the energy available for ablation by 20%.Consequently,only 37%of the energy was used for melting compared to that used in the uncovered regions(67%).Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045-0.090 m reduced the ice loss by approximately 68%-72%,and a further increase in the thickness of the geotextile cover led to little improvements.A higher temperature and greater wind speed increased glacier ablation,although their effects were small.When the precipitation was set to zero,it led to a significantly increased melt.Overall,the geotextile effectively protected the glacier tongue from rapid melting,and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.
基金supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No. KZCX2-EW-311)the National Basic Research Program of China (No. 2007CB411501)the National Natural Science Foundation of China (Nos. 1141001040, J0930003/J0109)
文摘In order to verify the feasibility and stability of a degree-day model on simulating the long time series of glacier mass balance, we apply a degree-day model to simulate the mass balance of Urumqi Glacier No. 1 for the period 1987/1988-2007/2008 based on temperature and precipitation data from a nearby climate station. The model is calibrated by simulating point measurements of mass bal- ance, mass balance profiles, and mean specific mass balance during 1987/1988-1996/1997. The opti- mized parameters are obtained by using a least square method to make the model fit the measured mass balance through the model calibration. The model validation (1997/1998-2007/2008) indicates that the modeled results are in good agreement with the observations. The static mass balance sensitiv- ity of Urumqi Glacier No. 1 is analyzed by computing the mass balance of the glacier for a temperature increase of 1℃, with and without a 5% precipitation increase, and the values for the east branch are -0.80 and -0.87 m w.e. a-1℃-1, respectively, and for the west branch, the values are -0.68 and -0.74 m w.e. a-1℃-1, respectively. Moreover, the analysis of the parameter stability indicates that the parame- ters in the model determined from the current climate condition can be applied in the prediction of the future mass balance changes for the glacier and provide a reference for extending the model to other small glaciers in western China.
文摘In this paper the degree day mass balance model is applied to the sensitivity test of mass balance/ELA(equilibrium line altitude) to climate change of Glacier No.1 at Urumqi Riverhead, the Tianshan Mountains, China. The results demonstrate that the mass balance of Glacier No.1, which is of continental type and accumulates in warm seasons, is less sensitive than that of a maritime glacier. On Glacier No.1, air temperature rise of 1℃ or precipitation increase by 20% can cause the ELA shift 81 m up or 31 m down respectively. Air temperature and precipitation play the different roles in the mass balance formation, in which the mass balance hypsometry follows the temperature variations by the means of rotation against the elevation axis and it shifts in parallel with precipitation change. Assuming a future temperature rise of 2 ℃ the mass losing trend on Glacier No.1 can not be radically alleviated even if there is a precipitation increase by 30%.
基金Project supported by the Ministry of Science and Technology of China (Grant No. 96-912-01-02) and by the Chinese Acade my of Sciences (Grant No. KZ951-B1-212).
文摘The glaciers in the arid region of Northwest China are viewed as an independent system, and glacier variation and mass balance fluctuation since the Little Ice Age and in the recent decades are estimated. Based on the estimation, the threshold time of glacier runoff against the backgrounds of the current and future varying climate conditions is simulated.
文摘Under the control of geographical environment and the influence ofmodified west air mass, the mass balance of glaciers in the Tianshan Mountains hascontinously decreased since the 1970s. However, the lake level has increased gradually duo to the increase of precipitation. The interaction between temperature andprecipitation resulted in a normal and slightly more total amount of water resources inthe areas of the Tianshan Mountains. It is estimated that this climatic trend will lastto the early stage of the next century.
文摘为认识全球变暖背景下中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应,以天山乌鲁木齐河源1号冰川和藏东南帕隆94号冰川为例,结合大西沟与察隅站气象资料,对1980—2015年两条冰川的物质平衡变化特征及差异进行了分析。结果表明:36 a来乌源1号冰川与帕隆94号冰川物质平衡总体上均呈下降趋势,累积物质平衡达-17 102 mm w. e.与-8 159 mm w. e.,相当于冰川厚度减薄19 m与9. 01 m,且分别于1996、2004年左右发生突变。同期两条冰川所处区域年均温呈显著上升趋势,而降水量却表现出不同的变化态势;二者年内气温分配相仿,但降水分配差异较大。初步分析认为气温上升是导致乌源1号冰川与帕隆94号冰川物质亏损的主要原因,冰川区气温和降水变化幅度的差异和地性因子(坡度、冰川面积)的不同使得乌源1号冰川对气候变化响应的敏感性高于帕隆94号冰川,由于目前海洋性冰川物质平衡监测时段相对较短,为深入研究中国西部冰川物质平衡变化及过程仍需加强对冰川的持续观测。