This overview discusses old and new results as to the controversy on the past glacier extension in High Asia, which has been debated for 35 years now. This paper makes an attempt to come closer to a solution. H.v. Wis...This overview discusses old and new results as to the controversy on the past glacier extension in High Asia, which has been debated for 35 years now. This paper makes an attempt to come closer to a solution. H.v. Wissmann's interpretation (1959) of a small-scale glaciation contrasts with M. Kuhle's reconstruction (1974) of a large-scale glaciation with a 2.4 million km2 extended Qinghai-Xizang (Tibetan) inland glaciation and a Himalaya-Karakorum icestream network. Both opinions find support but also contradiction in the International and Chinese literature (Academia Sinica). The solution of this question is of supraregional importance because of the subtropical position of the concerned areas. In case of large albedo-intensive ice surfaces, a global cooling would be the energetical consequence and, furthermore, a breakdown of the summer monsoon. The current and interglacial heat-low above the very effective heating panel of the Qinghai-Xizang (Tibetan) Plateau exceeding 4000 m, which gives rise to this monsoon circulation, would be replaced by the cold-high of an inland ice. In addition, the plate-tectonically created Pleistocene history of the uplift of High Asia — should the occasion arise up to beyond the snowline (ELA) —would attain a paleoclimatically great, perhaps global importance. In case of a heavy superimposed ice load, the question would come up as to the glacio-isostatic interruption of this primary uplift. The production of the loesses sedimentated in NE-China and their very probable glacial genesis as well as an eustatic lowering of the sea-level by 5 to 7 m in the maximum case of glaciation are immediately tied up with the question of glaciation we want to discuss. Not the least, the problems of biotopes of the sanctuary-centres of flora and fauna, i.e., interglacial re-settlement, are also dependent on it. On the basis of this Quaternary- geomorphological-glaciological connection, future contributions are requested on the past glaciation, the current and glacial permafrost table and periglacial development, the history of uplift, and the development of Ice Age lakes and loess, but also on the development of vegetation and fauna in High Asia.展开更多
Quantitative glacial chronologies of past glaciations are sparse in the Himalaya, and mostly absent in the Kashmir Himalaya. We used cosmogenicBe exposure dating, and geomorphological mapping to reconstruct glacial ad...Quantitative glacial chronologies of past glaciations are sparse in the Himalaya, and mostly absent in the Kashmir Himalaya. We used cosmogenicBe exposure dating, and geomorphological mapping to reconstruct glacial advances of the Thajwas Glacier(TG) in the Great Himalayan Range of the Kashmir Himalaya. FromBe exposure dating of ten moraine boulders, four glacial stages with ages ~20.77 ±2.28 ka, ~11.46 ± 1.69 ka, ~9.12 ± 1.39 ka and ~4.19 ± 0.78 ka, were identified. The reconstructed cosmogenic radionuclide ages confirmed the global Last Glacial Maximum(g LGM), Younger Dryas, Early Holocene, and Neoglaciation episodes. As per area and volume change analyses, the TG has lost 51.1 km~2 of its area and a volume of 2.64 km~3 during the last 20.77 ± 2.28 ka. Overall, the results suggested that the TG has lost 64% of area and 73% of volume from the Last glacial maximum to Neoglaciation and about 85.74% and 87.67% of area and volume, respectively, from Neoglaciation to the present day. The equilibrium line altitude of the TG fluctuated from 4238 m a.s.l present to3365 m a.s.l during the g LGM(20.77 ± 2.28 ka). The significant cooling induced by a drop in mean ambient temperature resulted in a positive mass balance of the TG during the g LGM. Subsequently the melting accelerated due to the continuing rise of the global ambient temperature. Paleo-glacial history reconstruction of the Kashmir Himalaya, with its specific geomorphic and climatic setting, would help close the information gap about the chronology of past regional glacial episodes.展开更多
The evolution of mountainous topography is the result of the interactions of climate,topography,and erosion.Glaciers are one of the most active erosional forces sculpting mountainous regions.However,our ability to und...The evolution of mountainous topography is the result of the interactions of climate,topography,and erosion.Glaciers are one of the most active erosional forces sculpting mountainous regions.However,our ability to understand this erosional force is limited by the controversy regarding the major factors controlling glacial erosion.We selected the Nianbaoyeze Shan,which is occupied by subcontinental glaciers(likely cold-based or polythermal glaciers)in the northeastern Tibetan Plateau,to study how erosion by alpine glaciers sculpts the landscape.We first applied a power law model(y=axb)fit to the cross-profiles of glacial valleys and analyzed the controlling factor of glacial erosion;we then identified the morphometric characteristics of the cirques to analyze the influencing factors,and investigated the development patterns of glacial valleys and cirques.Finally,we used hypsometry and the slopealtitude curves and reconstructed the palaeo-glacier surfaces and palaeo-Equilibrium Line Altitudes(ELAs)to determine if the glacial buzzsaw effect had impacted this glaciated region with subcontinental glaciers.Our findings show that ice flux is the main factor controlling glacial erosion.In this region,decreasing temperatures promote an increase in glacier mean size(i.e.,ice flux),which enhances the rate of glacial erosion.Cirque morphology is mainly influenced by aspect and the ELA.The development patterns of glacial valleys and cirques were dominated by a widening process.The ELAs of Marine Isotope Stage(MIS)-3 derived from the cirque floor altitudes or the Accumulation Area Ratio(AAR)and Area-Altitude Balance Ratio(AABR)coincide with the hypsometric maximum and the reduction in slopealtitude curves,which indicates that glacial buzzsaw has impacted this region.Furthermore,the glacial buzzsaw effect has profoundly influenced the mountain heights and topographic evolution in this subcontinental glaciated region.展开更多
The Transantarctic Mountains are an important corridor between the East Antarctic Ice Sheet and the Western Ross Sea,where most current ice streams and outlet glaciers arise.We investigated Ricker Hills,the largest ex...The Transantarctic Mountains are an important corridor between the East Antarctic Ice Sheet and the Western Ross Sea,where most current ice streams and outlet glaciers arise.We investigated Ricker Hills,the largest exposed mountainous region between Southern Victoria Land and Terra Nova Bay,and dated the glacial landforms using in-situ cosmogenic-nuclide 10 Be surface exposure dating to reconstruct the paleo-glacial dynamics.The surface of the Hollingsworth glacier lowered since the middle of Marine Isotope Stage(MIS)2(22.1 ka);therefore,the Last Glacial Maximum(LGM)occurred before that period.Cosmogenic,geomorphic,and climatic records constrained the glacial surface slope to be between 5.4°and 6.8°.The ice was 270-320 m thicker at the LGM(MIS 2)than presently but did not override the top surface of the Benson Knob.Moreover,previous glacial periods such as the local LGM(MIS 4)or Penultimate Glacial Maximum(MIS 6)maintained thicker ice than the LGM(MIS 2).The Ross Ice Shelf opening during the mid-Holocene(~6 ka)caused the rapid collapse of the terminal outlet glaciers and supplied notable snow accumulation upstream,which stagnated lowering.The greatest lowering and retreat occurred during the late Holocene(2.3~0.8 ka),when elephant seal colonies thrived in the Ross Embayment.展开更多
Annual mass balance is an important factor that reflects glacier change and glacier meltwater resources.In this study,we analyzed the changes in glacier area,snow line altitude(SLA)and surface elevation in theány...Annual mass balance is an important factor that reflects glacier change and glacier meltwater resources.In this study,we analyzed the changes in glacier area,snow line altitude(SLA)and surface elevation in theányêmaqên Mountain region using multisource remote sensing data.Then,the annual mass balance of two glaciers was reconstructed by using SLA-mass-balance gradient method.The results showed that the glacier area in theányêmaqên Mountains decreased by 29.4 km2from 1985 to 2017.The average SLAs of the Halong Glacier and Yehelong Glacier were approximately 5290 m and 5188 m,respectively.The glacier mass balance for the two glaciers from 1990 to 2020 was-0.71 m w.e.a^(-1) and-0.63 m w.e.a^(-1),respectively.Our results indicate that SLA is an important indicator of glacier changes,and a long sequence of SLAs can more accurately reconstruct the glacier mass balance of the glacier.The mean annual glacial meltwater-fed streamflow is 1.45×10^(7)m^(3) and 1.12×10^(7)m^(3),respectively.Sensitivity analysis indicates that summer air temperature plays a leading role in regard to the influential climatic factors of glacial retreat in theányêmaqên Mountains.This highlights the potential of the methodology for application on reconstructing annual glacier surface mass balance at larger scales without direct measurements.展开更多
文摘This overview discusses old and new results as to the controversy on the past glacier extension in High Asia, which has been debated for 35 years now. This paper makes an attempt to come closer to a solution. H.v. Wissmann's interpretation (1959) of a small-scale glaciation contrasts with M. Kuhle's reconstruction (1974) of a large-scale glaciation with a 2.4 million km2 extended Qinghai-Xizang (Tibetan) inland glaciation and a Himalaya-Karakorum icestream network. Both opinions find support but also contradiction in the International and Chinese literature (Academia Sinica). The solution of this question is of supraregional importance because of the subtropical position of the concerned areas. In case of large albedo-intensive ice surfaces, a global cooling would be the energetical consequence and, furthermore, a breakdown of the summer monsoon. The current and interglacial heat-low above the very effective heating panel of the Qinghai-Xizang (Tibetan) Plateau exceeding 4000 m, which gives rise to this monsoon circulation, would be replaced by the cold-high of an inland ice. In addition, the plate-tectonically created Pleistocene history of the uplift of High Asia — should the occasion arise up to beyond the snowline (ELA) —would attain a paleoclimatically great, perhaps global importance. In case of a heavy superimposed ice load, the question would come up as to the glacio-isostatic interruption of this primary uplift. The production of the loesses sedimentated in NE-China and their very probable glacial genesis as well as an eustatic lowering of the sea-level by 5 to 7 m in the maximum case of glaciation are immediately tied up with the question of glaciation we want to discuss. Not the least, the problems of biotopes of the sanctuary-centres of flora and fauna, i.e., interglacial re-settlement, are also dependent on it. On the basis of this Quaternary- geomorphological-glaciological connection, future contributions are requested on the past glaciation, the current and glacial permafrost table and periglacial development, the history of uplift, and the development of Ice Age lakes and loess, but also on the development of vegetation and fauna in High Asia.
基金conducted with the help of grants from the Department of Science and Technology (DST), Government of India under the sponsored research project titled “Centre of Excellence for Glacial Studies in Western Himalaya”granting fellowship to Omar Jaan Paul under the project No. UFR-59313。
文摘Quantitative glacial chronologies of past glaciations are sparse in the Himalaya, and mostly absent in the Kashmir Himalaya. We used cosmogenicBe exposure dating, and geomorphological mapping to reconstruct glacial advances of the Thajwas Glacier(TG) in the Great Himalayan Range of the Kashmir Himalaya. FromBe exposure dating of ten moraine boulders, four glacial stages with ages ~20.77 ±2.28 ka, ~11.46 ± 1.69 ka, ~9.12 ± 1.39 ka and ~4.19 ± 0.78 ka, were identified. The reconstructed cosmogenic radionuclide ages confirmed the global Last Glacial Maximum(g LGM), Younger Dryas, Early Holocene, and Neoglaciation episodes. As per area and volume change analyses, the TG has lost 51.1 km~2 of its area and a volume of 2.64 km~3 during the last 20.77 ± 2.28 ka. Overall, the results suggested that the TG has lost 64% of area and 73% of volume from the Last glacial maximum to Neoglaciation and about 85.74% and 87.67% of area and volume, respectively, from Neoglaciation to the present day. The equilibrium line altitude of the TG fluctuated from 4238 m a.s.l present to3365 m a.s.l during the g LGM(20.77 ± 2.28 ka). The significant cooling induced by a drop in mean ambient temperature resulted in a positive mass balance of the TG during the g LGM. Subsequently the melting accelerated due to the continuing rise of the global ambient temperature. Paleo-glacial history reconstruction of the Kashmir Himalaya, with its specific geomorphic and climatic setting, would help close the information gap about the chronology of past regional glacial episodes.
基金funded by the National Natural Science Foundation of China(Grant Nos.41971003)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant Nos.2019QZKK0205)the Science and technology Project of Tibet Autonomous Region(Grant Nos.XZ202101ZY0001G)。
文摘The evolution of mountainous topography is the result of the interactions of climate,topography,and erosion.Glaciers are one of the most active erosional forces sculpting mountainous regions.However,our ability to understand this erosional force is limited by the controversy regarding the major factors controlling glacial erosion.We selected the Nianbaoyeze Shan,which is occupied by subcontinental glaciers(likely cold-based or polythermal glaciers)in the northeastern Tibetan Plateau,to study how erosion by alpine glaciers sculpts the landscape.We first applied a power law model(y=axb)fit to the cross-profiles of glacial valleys and analyzed the controlling factor of glacial erosion;we then identified the morphometric characteristics of the cirques to analyze the influencing factors,and investigated the development patterns of glacial valleys and cirques.Finally,we used hypsometry and the slopealtitude curves and reconstructed the palaeo-glacier surfaces and palaeo-Equilibrium Line Altitudes(ELAs)to determine if the glacial buzzsaw effect had impacted this glaciated region with subcontinental glaciers.Our findings show that ice flux is the main factor controlling glacial erosion.In this region,decreasing temperatures promote an increase in glacier mean size(i.e.,ice flux),which enhances the rate of glacial erosion.Cirque morphology is mainly influenced by aspect and the ELA.The development patterns of glacial valleys and cirques were dominated by a widening process.The ELAs of Marine Isotope Stage(MIS)-3 derived from the cirque floor altitudes or the Accumulation Area Ratio(AAR)and Area-Altitude Balance Ratio(AABR)coincide with the hypsometric maximum and the reduction in slopealtitude curves,which indicates that glacial buzzsaw has impacted this region.Furthermore,the glacial buzzsaw effect has profoundly influenced the mountain heights and topographic evolution in this subcontinental glaciated region.
基金supported by Korea Polar Research Institute(PE22090)。
文摘The Transantarctic Mountains are an important corridor between the East Antarctic Ice Sheet and the Western Ross Sea,where most current ice streams and outlet glaciers arise.We investigated Ricker Hills,the largest exposed mountainous region between Southern Victoria Land and Terra Nova Bay,and dated the glacial landforms using in-situ cosmogenic-nuclide 10 Be surface exposure dating to reconstruct the paleo-glacial dynamics.The surface of the Hollingsworth glacier lowered since the middle of Marine Isotope Stage(MIS)2(22.1 ka);therefore,the Last Glacial Maximum(LGM)occurred before that period.Cosmogenic,geomorphic,and climatic records constrained the glacial surface slope to be between 5.4°and 6.8°.The ice was 270-320 m thicker at the LGM(MIS 2)than presently but did not override the top surface of the Benson Knob.Moreover,previous glacial periods such as the local LGM(MIS 4)or Penultimate Glacial Maximum(MIS 6)maintained thicker ice than the LGM(MIS 2).The Ross Ice Shelf opening during the mid-Holocene(~6 ka)caused the rapid collapse of the terminal outlet glaciers and supplied notable snow accumulation upstream,which stagnated lowering.The greatest lowering and retreat occurred during the late Holocene(2.3~0.8 ka),when elephant seal colonies thrived in the Ross Embayment.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0205)the National Natural Science Foundation of China(grant No.42071077,42171148)the Fundamental Research Funds for the Central Universities(lzujbky-2021-sp11)。
文摘Annual mass balance is an important factor that reflects glacier change and glacier meltwater resources.In this study,we analyzed the changes in glacier area,snow line altitude(SLA)and surface elevation in theányêmaqên Mountain region using multisource remote sensing data.Then,the annual mass balance of two glaciers was reconstructed by using SLA-mass-balance gradient method.The results showed that the glacier area in theányêmaqên Mountains decreased by 29.4 km2from 1985 to 2017.The average SLAs of the Halong Glacier and Yehelong Glacier were approximately 5290 m and 5188 m,respectively.The glacier mass balance for the two glaciers from 1990 to 2020 was-0.71 m w.e.a^(-1) and-0.63 m w.e.a^(-1),respectively.Our results indicate that SLA is an important indicator of glacier changes,and a long sequence of SLAs can more accurately reconstruct the glacier mass balance of the glacier.The mean annual glacial meltwater-fed streamflow is 1.45×10^(7)m^(3) and 1.12×10^(7)m^(3),respectively.Sensitivity analysis indicates that summer air temperature plays a leading role in regard to the influential climatic factors of glacial retreat in theányêmaqên Mountains.This highlights the potential of the methodology for application on reconstructing annual glacier surface mass balance at larger scales without direct measurements.