Leukocyteremovalfilters made of superfine glass fiber membranes for depleting leukocytes in red cell suspensions to prevent nonhemolytic transfusion reactions were investigated. The performance evaluation of such fil...Leukocyteremovalfilters made of superfine glass fiber membranes for depleting leukocytes in red cell suspensions to prevent nonhemolytic transfusion reactions were investigated. The performance evaluation of such filters was based on the detection of leukocyte depletion rate and red cell recovery rate. Residual leukocytes after filtration were counted in a 50 l Nageotte counting chamber. The chemical stability of the glass fiber membranes was studied by plasma emission spectrometer and by measuring the ion content and weighing nonvolatile matter in water extract. The structural stability of the glass fiber membranes was studied by micropore filter membrane method. The results showed that glass fiber membrane filters could deplete more than 99.0% of leukocytes in the red cell suspension prepared from 400 ml whole blood. The total number of residual leukocytes was less than 510\+6. The water extract of the glass fiber membranes contained only few Si\+\{4+\} and Ca\+\{2+\} and less than 2 mg/100 ml o f nonvolatile matter. No broken or loose fibers were found in the filters. Scanning electron microscopy (SEM) showed that the structure of the glass fiber membranes was instrumental in holding and trapping leukocytes.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef...In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Artificial bone, carbon/glass fiber reinforced PM-MA composites have been prepared by hot press moulding of pre-preg -which monofilments of CF and GF impregnated by MMA prepolymer. When the PMMA volume fraction in com...Artificial bone, carbon/glass fiber reinforced PM-MA composites have been prepared by hot press moulding of pre-preg -which monofilments of CF and GF impregnated by MMA prepolymer. When the PMMA volume fraction in com-posites is 50% > theoretical and experimental results show that strength and modules of these hybrid composites are in accord with 'rule of mixture'. The tensile and flexure strength are the lowest when the raletive volume fraction of carbon fiber in rein-forcements is 50%,SEM examinations further explained re-sults.展开更多
Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surf...Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.展开更多
This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for ...This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fi- ber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and ⊥-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams’ ductility, especially for the over-strengthened beams (⊥-shaped beams).展开更多
A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100...A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.展开更多
The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly we...The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to eaeh other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiher that parallels to the neutral axis of plated beam within the scope of effective height ( h0 ) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εGFRP=Kεsteel.展开更多
Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stabi...Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glass fiber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid's mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glass fiber materials, knurling and coated projection process, the f^acture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fiber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation.展开更多
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat...With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.展开更多
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics...Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.展开更多
Glass fiber reinforced polypropylene(GF-PP)composites have high flammability on account of wick effect which leads to accelerated flow of the polymer melt along the glass fibers(GF)surface to the flame zone.In this st...Glass fiber reinforced polypropylene(GF-PP)composites have high flammability on account of wick effect which leads to accelerated flow of the polymer melt along the glass fibers(GF)surface to the flame zone.In this study,dipentaerythritol(DPER),a charring agent,was adsorbed on the GF surface through the hydrogen bond between silane coupling agent and DPER.DPER has a synergistic effect with the intumescent flame retardants(IFR)added in the composites,which can induce interfacial carbonization on the surface of GF,thus transforming the intrinsic smooth GF surface into roughness one.In this way,the negative effect of the wick effect in flame retardancy is weakened.Moreover,the char residues remained on the surface of GF can bring an improved adhesion between GF and char residues formed in the resin so that a more stable barrier char layer is formed.The PP composites with 20 wt%modified glass fiber(M-GF)and 30 wt%IFR can achieve the UL-94 V-0,and its limiting oxygen index(LOI)value increased from 16.5%to 29.5%.Simultaneously,the heat release rate(HRR),total heat release(THR)and total smoke release(TSR)decreased significantly,and the peak of heat release rate(PHRR)reduced60.6%compared with GF-PP.展开更多
An asymmetric heating method for fusion splicing of 1 060-XP silica fiber (1 060F) and phosphate glass fiber (PGF) using an electric arc splicer has been proposed. Double joints with the lowest splice loss of 0.6 ...An asymmetric heating method for fusion splicing of 1 060-XP silica fiber (1 060F) and phosphate glass fiber (PGF) using an electric arc splicer has been proposed. Double joints with the lowest splice loss of 0.6 dB and good bending-resist strength between 1 060 F and PGF has been obtained. The main reasons affecting fiber splice loss and strength have been analyzed.展开更多
Abstract: Structure, crystallization and dissolution properties of CaO-MgO-SiO2 inorganic glass fiber in the presence of additives (A12O3, Y2O3) were investigated by DTA, XRD, FTIR and ICP-AES techniques. The resul...Abstract: Structure, crystallization and dissolution properties of CaO-MgO-SiO2 inorganic glass fiber in the presence of additives (A12O3, Y2O3) were investigated by DTA, XRD, FTIR and ICP-AES techniques. The results show that with the addition ofAl2O3 and Y2O3, the glass network structure is strengthened and the precipitation of crystals is inhibited for heat-treated fibers. Compared with Y2O3 doped fibers, AI2O3 presents more significant effects on the enhancement of silica network and the inhibition of crystallization in fibers. As for dissolution properties in physiological fluids, though the weight losses, changes of pH values and leached ions concentration lower slightly with the addition ofA1203 and Y203 for the intensified network structure, and fibers still present high dissolution rates.展开更多
The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vesse...The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.展开更多
In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced c...In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced concrete panels.For the application of the ANN models,143 different four-point bending test results of glass fiber reinforced concrete mixes with the varied parameters of temperature,fiber content and slump values were introduced the artificial bee colony optimization and conventional back propagation algorithms.Training and the testing results of the corresponding models showed that artificial neural networks trained with the artificial bee colony optimization algorithm have remarkable potential for the prediction of modulus of rupture values and this method can be used as a preliminary decision criterion for quality check of the fabricated products.展开更多
The method of manufacturing the composite wire by extruding lead to coated glass fiber is described. The different composite wire that diameter is from 0.5 to 1.0mm has been produced by two kinds of different extrudin...The method of manufacturing the composite wire by extruding lead to coated glass fiber is described. The different composite wire that diameter is from 0.5 to 1.0mm has been produced by two kinds of different extruding technology (getting wire along horizontal direction and getting wire along perpendicular direction). The optimal extruding techno- logical parameter has been given in different extruding technology by the physical simulation (H: 300℃, 550kN, 0.16mm. P: 300℃, 215kN, 0.16mm). The effect on the coating speed by other extruding technological parameters in the different extruding technology has been discussed. The extruding temperature and extruding force is higher, the coating speed is faster. It has been pointed, that the affection on the extruding technology by the extruding temperature has also behaved as the extruding temperature rising up spontaneously. The reason for exiting the minimum extruding force and maximum extruding force also has been discussion in this paper. It is also important to the extruding process and coating speed that is the coating clearance.展开更多
Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent...Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent years.How to use the finite element method to research bushing was introduced in the article.Physics fields and many relevant parameters of one real bushing were calculated.Through the results of calculation,it indicate that the finite element method is very useful in bushing research of designing and optimizing.展开更多
The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon n...The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.展开更多
文摘Leukocyteremovalfilters made of superfine glass fiber membranes for depleting leukocytes in red cell suspensions to prevent nonhemolytic transfusion reactions were investigated. The performance evaluation of such filters was based on the detection of leukocyte depletion rate and red cell recovery rate. Residual leukocytes after filtration were counted in a 50 l Nageotte counting chamber. The chemical stability of the glass fiber membranes was studied by plasma emission spectrometer and by measuring the ion content and weighing nonvolatile matter in water extract. The structural stability of the glass fiber membranes was studied by micropore filter membrane method. The results showed that glass fiber membrane filters could deplete more than 99.0% of leukocytes in the red cell suspension prepared from 400 ml whole blood. The total number of residual leukocytes was less than 510\+6. The water extract of the glass fiber membranes contained only few Si\+\{4+\} and Ca\+\{2+\} and less than 2 mg/100 ml o f nonvolatile matter. No broken or loose fibers were found in the filters. Scanning electron microscopy (SEM) showed that the structure of the glass fiber membranes was instrumental in holding and trapping leukocytes.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
文摘In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
文摘Artificial bone, carbon/glass fiber reinforced PM-MA composites have been prepared by hot press moulding of pre-preg -which monofilments of CF and GF impregnated by MMA prepolymer. When the PMMA volume fraction in com-posites is 50% > theoretical and experimental results show that strength and modules of these hybrid composites are in accord with 'rule of mixture'. The tensile and flexure strength are the lowest when the raletive volume fraction of carbon fiber in rein-forcements is 50%,SEM examinations further explained re-sults.
基金The project was financially supported by The Space Foundation of Supporting-Technology of China (No. 2002EK1803)the Graduate Starting Seed Fund of Northwestern Polytechnical University (No. W016663)
文摘Ni-W-P coatings were deposited on the surface of glass fibers by the electroless plating process. The bath was very stable through the palladium salt test. There was no phenomenon of peeling and blistering on the surface of the Ni-W-P alloy glass fibers in the thermal shock test. It showed that the deposit had high impact strength and good adhesion. The morphology of the coatings was observed by scanning electron microscope (SEM). The elements and their contents were tested and analyzed by energy dispersion spectrometer (EDS). The tungsten content reached up to 12.1 wt.%. The effects of the concentrations of NiSO4, Na2WO4, and NaH2PO2.H20 on the conductivity of the coatings were studied. The resistivity of the Ni-W-P alloy glass fibers reached 7.39 × 10^-3 Ωcm. The alloy coatings on glass fibers were analyzed by XRD. The results indicated that the deposit had an amorphous structure and good heat stability. The suitable work temperature range was lower than 190℃. Finally, the electromagnetic parameters of the Ni-W-P alloy glass fibers were tested and analyzed primarily. The magnetic loss reached 0.04023 and the dielectric loss reached -5.80239. The plated alloy is a kind of soft magnetic material.
文摘This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fi- ber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fi- ber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and ⊥-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams’ ductility, especially for the over-strengthened beams (⊥-shaped beams).
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Natural Science Foundation of Guangdong Province under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the ’Cross and Cooperative’ Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘A compact linearly polarized, low-noise, narrow-linewidth, single-frequency fiber laser at 1950nm is demonstrated. This compact fiber laser is based on a 21-mm-long homemade Tm3+-doped germanate glass fiber. Over 100-mW stable continuous-wave single transverse and longitudinal mode lasing at 195Ohm are achieved. The measured relative intensity noise is less than -135dB/Hz at frequencies over 5 MHz. The signal-to-noise ratio of the laser is larger than 72dB, and the laser linewidth is less than 6kHz, while the obtained linear polarization extinction ratio is higher than 22 dB.
基金Sponsored by the Natural Science Foundation of Henan Province(Grant No.004041700).
文摘The testing of thirteen reinforeed concrete (RC) beams strengthened by epoxy-bonded glass fiber reinforced plastic plate (GFRP) shows that the RC beam and the GFRP plate with epoxy bonding on it can work fairly well in coordination to eaeh other. But there is relative slipping between RC beam and GFRP plate. And the strain of GFRP and steel rebar of RC beam satisfies the quasi-plane-hypothesis, that is, the strain of longitudinal fiher that parallels to the neutral axis of plated beam within the scope of effective height ( h0 ) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of GFRP and steel rebar satisfies the equation: εGFRP=Kεsteel.
基金Funded by National Natural Science Foundation of China(No.41372289)the Shandong Province Higher Educational Science and Technology Program(No.12LH03)+1 种基金the China's Post-doctoral Science Fund(No.2012M521365)the SDUST Research Fund
文摘Glass fiber reinforced plastics geogrid has a wide application in the field of soil reinforcement because of its high strength, good toughness, and resistance to environmental stress, creep resistance and strong stability. In order to get high-powered glass fiber reinforced plastics geogrid and its mechanical characteristics, the properties and physical mechanical index of geogrid have been got through the study of its raw material, production process and important quality index. The analysis and study have been made to the geogrid's mechanical properties with loading speed, three-axial compression, temperature tensile test and FLAC3D numerical simulation, thus obtain the mechanical parameters of its displacement time curve, breaking strength and elongation at break. Some conclusions can be drawn as follows: (a) Using glass fiber materials, knurling and coated projection process, the f^acture strength and corrosion resistance of geogrid are greatly improved and the interlocking bite capability of soil is enhanced. (b) The fracture strength of geogrid is related to temperature and loading rate. When the surrounding rock pressure is fixed, the strength and anti-deformation ability of reinforced soil are significantly enhanced with increasing reinforced layers. (c) The pullout test shows the positive correlation between geogrid displacement and action time. (d) As a new reinforced material, the glass fiber reinforced plastics geogrid is not mature enough in theoretical research and practical experience, so it has become an urgent problem both in theoretical study and practical innovation.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Hebei Provincial Key Project of Science and Technology Research of(ZD20131027)
文摘With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Key Project of Science and Technology Research of Hebei Province,China(ZD20131027)
文摘Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.
基金supported by the National Natural Science Foundation of China(21878092,21838003,91834301)the Shanghai Scientific and Technological Innovation Project(18JC1410500,19JC1410400)+1 种基金the Innovation Program of Shanghai Municipal Education Commissionthe Fundamental Research Funds for the Central Universities(222201718002)。
文摘Glass fiber reinforced polypropylene(GF-PP)composites have high flammability on account of wick effect which leads to accelerated flow of the polymer melt along the glass fibers(GF)surface to the flame zone.In this study,dipentaerythritol(DPER),a charring agent,was adsorbed on the GF surface through the hydrogen bond between silane coupling agent and DPER.DPER has a synergistic effect with the intumescent flame retardants(IFR)added in the composites,which can induce interfacial carbonization on the surface of GF,thus transforming the intrinsic smooth GF surface into roughness one.In this way,the negative effect of the wick effect in flame retardancy is weakened.Moreover,the char residues remained on the surface of GF can bring an improved adhesion between GF and char residues formed in the resin so that a more stable barrier char layer is formed.The PP composites with 20 wt%modified glass fiber(M-GF)and 30 wt%IFR can achieve the UL-94 V-0,and its limiting oxygen index(LOI)value increased from 16.5%to 29.5%.Simultaneously,the heat release rate(HRR),total heat release(THR)and total smoke release(TSR)decreased significantly,and the peak of heat release rate(PHRR)reduced60.6%compared with GF-PP.
基金Funded by the Guangdong Science and Technology Program (No.2005A10602001)the Guangzhou Science and Technology Program (No.2006Z2-D0161)the Program for New Century Excellent Talents (No.NCET-04-0821)
文摘An asymmetric heating method for fusion splicing of 1 060-XP silica fiber (1 060F) and phosphate glass fiber (PGF) using an electric arc splicer has been proposed. Double joints with the lowest splice loss of 0.6 dB and good bending-resist strength between 1 060 F and PGF has been obtained. The main reasons affecting fiber splice loss and strength have been analyzed.
基金the National High Technology Research and Development Program ("863" Program) of China (No.2009AA032503)the National Natural Science Foundation of China (Nos.50872098, 51004080)the Open Fund of the Key State Laboratory Breeding Base of Refractories and Ceramics (Wuhan University of Science and Technology (No.G201004)
文摘Abstract: Structure, crystallization and dissolution properties of CaO-MgO-SiO2 inorganic glass fiber in the presence of additives (A12O3, Y2O3) were investigated by DTA, XRD, FTIR and ICP-AES techniques. The results show that with the addition ofAl2O3 and Y2O3, the glass network structure is strengthened and the precipitation of crystals is inhibited for heat-treated fibers. Compared with Y2O3 doped fibers, AI2O3 presents more significant effects on the enhancement of silica network and the inhibition of crystallization in fibers. As for dissolution properties in physiological fluids, though the weight losses, changes of pH values and leached ions concentration lower slightly with the addition ofA1203 and Y203 for the intensified network structure, and fibers still present high dissolution rates.
文摘The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.
文摘In this study,artificial neural networks trained with swarm based artificial bee colony optimization algorithm was implemented for prediction of the modulus of rapture values of the fabricated glass fiber reinforced concrete panels.For the application of the ANN models,143 different four-point bending test results of glass fiber reinforced concrete mixes with the varied parameters of temperature,fiber content and slump values were introduced the artificial bee colony optimization and conventional back propagation algorithms.Training and the testing results of the corresponding models showed that artificial neural networks trained with the artificial bee colony optimization algorithm have remarkable potential for the prediction of modulus of rupture values and this method can be used as a preliminary decision criterion for quality check of the fabricated products.
文摘The method of manufacturing the composite wire by extruding lead to coated glass fiber is described. The different composite wire that diameter is from 0.5 to 1.0mm has been produced by two kinds of different extruding technology (getting wire along horizontal direction and getting wire along perpendicular direction). The optimal extruding techno- logical parameter has been given in different extruding technology by the physical simulation (H: 300℃, 550kN, 0.16mm. P: 300℃, 215kN, 0.16mm). The effect on the coating speed by other extruding technological parameters in the different extruding technology has been discussed. The extruding temperature and extruding force is higher, the coating speed is faster. It has been pointed, that the affection on the extruding technology by the extruding temperature has also behaved as the extruding temperature rising up spontaneously. The reason for exiting the minimum extruding force and maximum extruding force also has been discussion in this paper. It is also important to the extruding process and coating speed that is the coating clearance.
基金National Science Foundation of China Yunnan United Foundation.(U0837601)the Natural Science Foundation of Yunnan Province,China(2010CF126)
文摘Design and optimization of bushing at present mainly use the traditional experience method.The relevant research that adopts computer simulation to carry on the operation behavior of the bushing has appeared in recent years.How to use the finite element method to research bushing was introduced in the article.Physics fields and many relevant parameters of one real bushing were calculated.Through the results of calculation,it indicate that the finite element method is very useful in bushing research of designing and optimizing.
基金Funded in Part by a Grant from Entropy Research Laboratories, San Francisco, California, USA
文摘The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.