Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the l...Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the lowest unoccupied molecular orbital (ELoMO), the highest positive charge (Qmax^+), dipole moments(μ) and the next highest occupied molecular orbital (ENLOMO)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, Tg dependent equation calculated at the HF/6-31G(d) level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods.展开更多
A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties....A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties.The nonlinear evolution of glass transition temperature(T_(g))with the addition of ZnO is ascribed to the competition of two converse factors,i e,the T_(g)depression as one of the colligative properties for a solution,on the one hand,and the enhancement of T_(g)due to the higher field strength of zinc cations compared to that of alkali ions.However,the nonlinear evolution of elastic moduli and coefficients of thermal expansion with r is attributed to the variance of intermediate-range clusters,which is confirmed by infrared and Raman scattering spectra.These findings are very helpful in tailoring the performance of borosilicate glasses.展开更多
The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined ...The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined using a differential scanning calorimetric(DSC) method. According to the DSC measurement results with different heating rates, the variation of T_g and the active energy of glass transition(E_g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C_(60) content(below 1.0 wt%) can influence the T_g of photorefractive polyphosphazenes. The T_g first increases and then decreases with the C_(60) content(below 1.0 wt%). The probable causes of the influence of C_(60) on T_g was proposed.展开更多
In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusio...In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusion coefficient. Obtainedresults clearly indicate that surface chains can travel for a relatively large distance in comparison with the characteristiclength scale of usual segmental motion even at a temperature below its bulk glass transition temperature, T_g^b. This isconsistent with our previous results that the surface glass transition temperature is much lower than the corresponding T_g^b.Also, it was experimentally revealed that there was a gradient of molecular motion in the surface region.展开更多
In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are car...In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). The Struik-Kohlrausch (SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time. A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters (the initial creep compliance, the characteristic retardation time, and the shape factor) determined by the aging time. It is shown that the momentary creep compliance curve of the PVC at 63℃ can be very well fitted by the SK formula for each aging time. However, the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures, and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinafes have shown a nonlinear phenomenon. Moreover, the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case. Finally, the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.展开更多
A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylate...A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylates with complex structures. A total of 50 polyarylates were randomly divided into three sets, viz., the training set (30 polymers), validation set (10 polymers) and prediction set (10 polymers). By adjusting various parameters by trial and error, the final optimum SVM model based on Austin Model 1 (AM1) calculation is a polynomial kernel with the parameters C of 100, ε of 1.00E-05 and d of 2. The root-mean-square (RMS) errors obtained from the training set, validation set and prediction set are 19.4, 12.8 and 15.5 K, respectively. Research results show that the proposed SVM model has better statistical quality than the previous models. Thus, applying the SVM algorithm to predict Tgs of polymers is feasible.展开更多
In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the avera...In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the average molecular weight M-e between entanglement points and the molecular weight M-mon of repeating unit. The output node is the glass transition temperature T-g, and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting the outcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transition temperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas to investigate other properties of the polymers.展开更多
We have synthesized styrene-acrylic latex and investigated the effect of such reaction conditions as the dosage of initiator, surfactant and stirring speed on monomer conversion and glass transition temperature (Tg) o...We have synthesized styrene-acrylic latex and investigated the effect of such reaction conditions as the dosage of initiator, surfactant and stirring speed on monomer conversion and glass transition temperature (Tg) of polymer by means of orthogonal experiment, then we get the best reaction conditions. Test results prove that the glass transition temperature of the polymer is directly related to the monomer con- version. The improvement of monomer conver- sion can make the glass transition temperature close to the theoretical value. In the case of high final conversion, we can predict the glass transition temperature of the polymers of different composition according to the theoretical relation effectively.展开更多
Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride ...Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride (THPA) curing agent and their single-walled carbon nanotubes (SWCNT) reinforced the epoxy matrix composites. Different characters such as the density of the materials and mean square displacements (MSDs) were calculated to estimate the glass transition temperatures (Tgs) of of the materials. 365 K and 423 K of the Tgs were obtained respectively, whereas the latter is much higher than the former. The simulation results indicated that the incorporation of SWCNTs in the epoxy matrix can significantly improve the Tg of the cured epoxy. The approach presented in this study is ready to be applied more widely to a large group of candidate polymers and nanofillers.展开更多
Strain glass is a frozen short-range strain ordered state found in shape memory alloys recently, which exhibits novel properties around the ideal glass transition temperature T_(0). However, the T_(0) of current strai...Strain glass is a frozen short-range strain ordered state found in shape memory alloys recently, which exhibits novel properties around the ideal glass transition temperature T_(0). However, the T_(0) of current strain glass systems is still very low, limiting their potential applications and experimental studies. In this paper, we reported two new strain glass systems with relatively high T_(0). In Ti_(50)Au_(50-x)Cr_(x) alloys, the strain glass appears at x = 25, and exhibits a T_(0) of 251 K, while in Ti_(50)Pt_(50-y)Fey alloys, the strain glass takes place at y = 30, and shows a T_(0) of 272 K. Both of them are comparable with the highest T_(0) value reported so far. Moreover, the phase diagrams of main strain glass systems in Ti-based alloys were summarized. It is found that the influence of the martensitic transformation temperature of the host alloy on the T_(0) of the strain glass is limited. This work may help to design new strain glass systems with higher T_(0) above ambient temperature.展开更多
Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane ...Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane chain parts, and systematically investigate their structure-property relationships.Results show that DNPEPs have impact sensitivities all higher than 25.2 J, thermal decomposition temperatures all higher than 254 ℃, and glass transition temperatures(T_(g)) lower than-90 ℃.Furthermore, the effects of DNPEPs as plasticizer are studied on hydroxyl terminated polybutadiene(HTPB) in detail, including the viscosity, glass transition temperatures and others. It is noteworthy that 2,2-dinitropropyl nonanoate(DNPNc) among these DNPEPs exhibits the most expected simultaneous tuning effects on both viscosity and T_(g) of HTPB systems, providing favorable potentials to replace the conventional plastizers as dioctyl sebacate(DOS) in the HTPB based propellants and explosives.展开更多
The effect of chromophores to the glass transition temperature of polyimide ensemble has been investigated by means of molecular dynamics simulation in conjunction with barrier analysis. Simulated Tg results indicated...The effect of chromophores to the glass transition temperature of polyimide ensemble has been investigated by means of molecular dynamics simulation in conjunction with barrier analysis. Simulated Tg results indicated a good agreement with experimental value. This study showed the MD simulation could estimate the effect of chromophores to the Tg of polyimide ensemble conveniently and an estimation approach method had a surprising deviation of Tg from experiment. At the same time, a polyimide structure with higher barrier energy was designed and validated by MD simulation.展开更多
Here, dielectric spectroscopy is used in the fre- quency range from 10-2 Hz up to 107 Hz and we found dynamics of the primary α-and intermolecular Johari–Goldstein β-processes are strongly correlated in diglycidyl-...Here, dielectric spectroscopy is used in the fre- quency range from 10-2 Hz up to 107 Hz and we found dynamics of the primary α-and intermolecular Johari–Goldstein β-processes are strongly correlated in diglycidyl-ether of bis-phenol-A and poly phenyl glycidyl-ether (PPGE) over a wide temperature from 193 to 345 K and pressure P range from 0.1 to 600 MPa. In contrast with the widespread opinion of statistical independence of these processes the α-β mutual dependence is quantitatively confirmed in [1] analysing the temperature and pressure behavior of the α-and (JG) β-processes the investigation of the ratio of dielectric strength of two processes close to Tg evidence that the importance of secondary dy namics in relaxing external electric stresses increase in glass formers at high pressures with respect to that of the structural relaxation. We suggest that the thermal agitation, acting above Tg is at the basis of the observed result.展开更多
A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrai...A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrained specimen test(TSRST) of the asphalt mixtures. The results show that the low temperature performance of diatomite asphalt is better than that of neat asphalt. The glass transition temperature can reflect the low temperature performance of the diatomite asphalt better and has a good relationship with breaking temperatures. Besides, the TSRST, the bending test, the compressing test and the contraction coefficient test are used to study the low temperature performance of the diatomite asphalt mixture. The results prove that the low temperature performance of the diatomite asphalt mixture is better than that of the neat asphalt mixture. The critical bending strain energy density and the compressing strain energy density of the diatomite asphalt mixture are greater than those of the neat asphalt mixture. After adding diatomite to the asphalt mixture, the contraction coefficient is reduced. Based on the above results, the anti-cracking mechanism of the diatomite asphalt mixture is analyzed from the angle of contraction performance and breaking energy.展开更多
基金The project was support by the Natural Science Foundation of University of Anhui Province (No. 2006KJ156B)
文摘Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the lowest unoccupied molecular orbital (ELoMO), the highest positive charge (Qmax^+), dipole moments(μ) and the next highest occupied molecular orbital (ENLOMO)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, Tg dependent equation calculated at the HF/6-31G(d) level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods.
基金Funded by National Natural Science Foundation of China(No.52172007)the Ph D Program Fund of Non-Metallic Excellence and Innovation Center for Building Materials(No.2022SFP6-2)+1 种基金the Key Technology Innovation Project of Hubei Province(No.2022BAA025)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010312)。
文摘A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties.The nonlinear evolution of glass transition temperature(T_(g))with the addition of ZnO is ascribed to the competition of two converse factors,i e,the T_(g)depression as one of the colligative properties for a solution,on the one hand,and the enhancement of T_(g)due to the higher field strength of zinc cations compared to that of alkali ions.However,the nonlinear evolution of elastic moduli and coefficients of thermal expansion with r is attributed to the variance of intermediate-range clusters,which is confirmed by infrared and Raman scattering spectra.These findings are very helpful in tailoring the performance of borosilicate glasses.
基金the National Science Foundation of China(No.11174258)the Development Foundation of China Academy of Engineering Physics(No.2013A0302016)
文摘The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined using a differential scanning calorimetric(DSC) method. According to the DSC measurement results with different heating rates, the variation of T_g and the active energy of glass transition(E_g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C_(60) content(below 1.0 wt%) can influence the T_g of photorefractive polyphosphazenes. The T_g first increases and then decreases with the C_(60) content(below 1.0 wt%). The probable causes of the influence of C_(60) on T_g was proposed.
基金This work was in part supported by a Gran-in-Aid for Scientific Research (A)(#13355034) from the Ministry of Education, Science, Sports, and Culture, Japan.
文摘In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusion coefficient. Obtainedresults clearly indicate that surface chains can travel for a relatively large distance in comparison with the characteristiclength scale of usual segmental motion even at a temperature below its bulk glass transition temperature, T_g^b. This isconsistent with our previous results that the surface glass transition temperature is much lower than the corresponding T_g^b.Also, it was experimentally revealed that there was a gradient of molecular motion in the surface region.
基金Project supported by the National Natural Science Foundation of China (Nos. 10672095 and 11072137)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). The Struik-Kohlrausch (SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time. A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters (the initial creep compliance, the characteristic retardation time, and the shape factor) determined by the aging time. It is shown that the momentary creep compliance curve of the PVC at 63℃ can be very well fitted by the SK formula for each aging time. However, the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures, and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinafes have shown a nonlinear phenomenon. Moreover, the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case. Finally, the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.
基金supported by the Open Project Program of Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,China (No.10HJYH06)
文摘A three-descriptor quantitative structure-property relationship (QSPR) model, based on the support vector machine (SVM) algorithm, was constructed to predict the glass transition temperatures (Tgs) ofpolyarylates with complex structures. A total of 50 polyarylates were randomly divided into three sets, viz., the training set (30 polymers), validation set (10 polymers) and prediction set (10 polymers). By adjusting various parameters by trial and error, the final optimum SVM model based on Austin Model 1 (AM1) calculation is a polynomial kernel with the parameters C of 100, ε of 1.00E-05 and d of 2. The root-mean-square (RMS) errors obtained from the training set, validation set and prediction set are 19.4, 12.8 and 15.5 K, respectively. Research results show that the proposed SVM model has better statistical quality than the previous models. Thus, applying the SVM algorithm to predict Tgs of polymers is feasible.
基金This research was financially supported by NSFC (No. 29874012) and the Special Funds for Major State Basic Research Projects (95-12 and G1999064800).
文摘In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the average molecular weight M-e between entanglement points and the molecular weight M-mon of repeating unit. The output node is the glass transition temperature T-g, and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting the outcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transition temperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas to investigate other properties of the polymers.
文摘We have synthesized styrene-acrylic latex and investigated the effect of such reaction conditions as the dosage of initiator, surfactant and stirring speed on monomer conversion and glass transition temperature (Tg) of polymer by means of orthogonal experiment, then we get the best reaction conditions. Test results prove that the glass transition temperature of the polymer is directly related to the monomer con- version. The improvement of monomer conver- sion can make the glass transition temperature close to the theoretical value. In the case of high final conversion, we can predict the glass transition temperature of the polymers of different composition according to the theoretical relation effectively.
文摘Molecular dynamic (MD) simulations were carried out to predict the thermo-mechanical properties of the cured epoxy network composed of diglycidyl ether bisphenol A (DGEBA) epoxy resin and tetrahydrophthalic anhydride (THPA) curing agent and their single-walled carbon nanotubes (SWCNT) reinforced the epoxy matrix composites. Different characters such as the density of the materials and mean square displacements (MSDs) were calculated to estimate the glass transition temperatures (Tgs) of of the materials. 365 K and 423 K of the Tgs were obtained respectively, whereas the latter is much higher than the former. The simulation results indicated that the incorporation of SWCNTs in the epoxy matrix can significantly improve the Tg of the cured epoxy. The approach presented in this study is ready to be applied more widely to a large group of candidate polymers and nanofillers.
基金Project supported by China Postdoctoral Science Foundation(Grant No.2019M650880)the National Natural Science Foundation of China(Grant Nos.51901243,61888102,and 11790291)+1 种基金the Natural Science Foundation of Guangdong Province,China(Grant No.2019B030302010)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)。
文摘Strain glass is a frozen short-range strain ordered state found in shape memory alloys recently, which exhibits novel properties around the ideal glass transition temperature T_(0). However, the T_(0) of current strain glass systems is still very low, limiting their potential applications and experimental studies. In this paper, we reported two new strain glass systems with relatively high T_(0). In Ti_(50)Au_(50-x)Cr_(x) alloys, the strain glass appears at x = 25, and exhibits a T_(0) of 251 K, while in Ti_(50)Pt_(50-y)Fey alloys, the strain glass takes place at y = 30, and shows a T_(0) of 272 K. Both of them are comparable with the highest T_(0) value reported so far. Moreover, the phase diagrams of main strain glass systems in Ti-based alloys were summarized. It is found that the influence of the martensitic transformation temperature of the host alloy on the T_(0) of the strain glass is limited. This work may help to design new strain glass systems with higher T_(0) above ambient temperature.
基金financial support of the National Natural Science Foundation of China (21875185)。
文摘Geminal dinitropropyl ester plasticizers(DNPEPs) possess excellent energetic performances which provide good potentials as insensitive plasticizer. In this study, we design and synthesize DNPEPs with different alkane chain parts, and systematically investigate their structure-property relationships.Results show that DNPEPs have impact sensitivities all higher than 25.2 J, thermal decomposition temperatures all higher than 254 ℃, and glass transition temperatures(T_(g)) lower than-90 ℃.Furthermore, the effects of DNPEPs as plasticizer are studied on hydroxyl terminated polybutadiene(HTPB) in detail, including the viscosity, glass transition temperatures and others. It is noteworthy that 2,2-dinitropropyl nonanoate(DNPNc) among these DNPEPs exhibits the most expected simultaneous tuning effects on both viscosity and T_(g) of HTPB systems, providing favorable potentials to replace the conventional plastizers as dioctyl sebacate(DOS) in the HTPB based propellants and explosives.
基金This project has been supported by the National Natural Science FoundationChina Special Funds for Major Slate Basic Research Project(G1999064800).
文摘The effect of chromophores to the glass transition temperature of polyimide ensemble has been investigated by means of molecular dynamics simulation in conjunction with barrier analysis. Simulated Tg results indicated a good agreement with experimental value. This study showed the MD simulation could estimate the effect of chromophores to the Tg of polyimide ensemble conveniently and an estimation approach method had a surprising deviation of Tg from experiment. At the same time, a polyimide structure with higher barrier energy was designed and validated by MD simulation.
文摘Here, dielectric spectroscopy is used in the fre- quency range from 10-2 Hz up to 107 Hz and we found dynamics of the primary α-and intermolecular Johari–Goldstein β-processes are strongly correlated in diglycidyl-ether of bis-phenol-A and poly phenyl glycidyl-ether (PPGE) over a wide temperature from 193 to 345 K and pressure P range from 0.1 to 600 MPa. In contrast with the widespread opinion of statistical independence of these processes the α-β mutual dependence is quantitatively confirmed in [1] analysing the temperature and pressure behavior of the α-and (JG) β-processes the investigation of the ratio of dielectric strength of two processes close to Tg evidence that the importance of secondary dy namics in relaxing external electric stresses increase in glass formers at high pressures with respect to that of the structural relaxation. We suggest that the thermal agitation, acting above Tg is at the basis of the observed result.
基金The National Natural Science Foundation of China(No.50778057)
文摘A kind of neat asphalt and three kinds of diatomite asphalt are tested using differential scanning calorimetry(DSC). The anti-cracking mechanism of diatomite asphalt is analyzed by DSC and the thermal stress restrained specimen test(TSRST) of the asphalt mixtures. The results show that the low temperature performance of diatomite asphalt is better than that of neat asphalt. The glass transition temperature can reflect the low temperature performance of the diatomite asphalt better and has a good relationship with breaking temperatures. Besides, the TSRST, the bending test, the compressing test and the contraction coefficient test are used to study the low temperature performance of the diatomite asphalt mixture. The results prove that the low temperature performance of the diatomite asphalt mixture is better than that of the neat asphalt mixture. The critical bending strain energy density and the compressing strain energy density of the diatomite asphalt mixture are greater than those of the neat asphalt mixture. After adding diatomite to the asphalt mixture, the contraction coefficient is reduced. Based on the above results, the anti-cracking mechanism of the diatomite asphalt mixture is analyzed from the angle of contraction performance and breaking energy.