The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied und...The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied under glass network modifier alkali mental oxide. The nanocrystals size in NaYF4 of Li2O modified samples was 11 nm, whereas in the Na20 and K2O modified sample, the crystal size was 25 and 43 nm, respectively. It was found that red, yellow and green upconversions were observed in SAL, SAN, SAK glass ceramics. The reported results would deepen the understanding of size effects on the lanthanide upcon- version in nanocrystals.展开更多
In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the avera...In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the average molecular weight M-e between entanglement points and the molecular weight M-mon of repeating unit. The output node is the glass transition temperature T-g, and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting the outcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transition temperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas to investigate other properties of the polymers.展开更多
The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r...The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r Erbium doped alkali and alkaline earth phosphate glasses. It is found the comp ositional dependence of σ emi is almost similar to that of Σ abs, wh ich is determined by the sum of Ω t (3Ω 2+10Ω 4+21Ω 6). In addition, the compositional dependence of Ω t was studied in these glass systems. As a resu lt, compared with Ω 4 and Ω 6, the Ω 2 has a stronger compositional depend ence on the ionic radius and content of modifiers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, alumi nate glass, and tellurate glass, since Ω 6 of phosphate glass is relatively la rge. A R is affected by the covalency of the Er 3+ ion sites and correspon ds to the Ω 6 value.展开更多
The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on th...The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on the irradiated glass at 109 Gy. A sodium-depleted layer with a thickness of a few tens of nanometers and the corresponding increase of network polymerization on the top surface are observed after electron bombardment, while the polymerization in the subsurface region has a negligible variation with the irradiation dose. Moreover, the formation of molecular oxygen after electron irradiation is evidenced, which is mainly aggregated in the first two-micron-thick irradiated glass surface. These modifications are correlated to the network relaxation process as a consequence of the diffusion and desorption of sodium species during electron irradiation.展开更多
The synthesis of pseudo- and semi-interpenetrating polymer networks (IPNs) based on polydimethylsiloxane (PDMS) and polystyrene (PS) is described. IPNs were obtained by simultaneous and in situ sequential synthesis pr...The synthesis of pseudo- and semi-interpenetrating polymer networks (IPNs) based on polydimethylsiloxane (PDMS) and polystyrene (PS) is described. IPNs were obtained by simultaneous and in situ sequential synthesis procedure. The preliminary studies on IPNs properties such as transition temperature, microphase separation and mechanical behaviors have been carried out by using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The experimental evidence clearly showed that semi-IPNs obtained by sequential synthesis procedure have higher interpenetrating extent than pseudo-IPNs synthesized by simultaneous procedure. Over the full composition, the PDMS/PS IPNs are immiscible. The pseudo-IPNs microphase separation can be greatly subdued through the formation of grafting bonds between two networks as well as the kinetic rate-matching of the individual network crosslinking.展开更多
Organoclay-modified hydroxylterminated polysulfone (PSF)/epoxy interpenetrating network nanocomposites (oM-PSF/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer...Organoclay-modified hydroxylterminated polysulfone (PSF)/epoxy interpenetrating network nanocomposites (oM-PSF/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polysulfone and epoxy resin (PSF/EP) using diaminodiphenylmethane (DDM) as curing agent.The mechanical properties like tensile strength,tensile modulus,flexural strength,flexural modulus and impact properties of the nanocomposites were studied as per ASTM standards.Different...展开更多
Copper-cadmium halide doped photochromic glass coating on plate glass has been prepared by a sol-gel process. The sample shows reversible photochromic effect. The results of X-ray diffraction (XRD) and infrared (IR) s...Copper-cadmium halide doped photochromic glass coating on plate glass has been prepared by a sol-gel process. The sample shows reversible photochromic effect. The results of X-ray diffraction (XRD) and infrared (IR) spectrum investigations indicate that the photochromic phase of tile coating is CuBr_xCl_(1-x), solid solution, and that the structure network of the coating is connected with the bonds of Si-O-Si, Si-O-B and Si-O-Al.展开更多
The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transition...The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transitions, respectively, were observed. Coordinate field index, which was proposed by deducing from Pauling′s rules on the basis of Zachariasen′s random network theory, can be used to rationalize the remarkable variation in the intensity of upconversion luminescence.展开更多
This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le...This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN.展开更多
基金supported by the National Natural Science Foundation of China(61368007,61265004,51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20125314120018)
文摘The effect of glass network modifier R2O (R=Li, Na, K) on upconversion luminescence in Er3+/yb3+ co-doped NaYF4 oxyfluoride glass-ceramics was investigated. NaYF4 nanocrystals with different sizes were studied under glass network modifier alkali mental oxide. The nanocrystals size in NaYF4 of Li2O modified samples was 11 nm, whereas in the Na20 and K2O modified sample, the crystal size was 25 and 43 nm, respectively. It was found that red, yellow and green upconversions were observed in SAL, SAN, SAK glass ceramics. The reported results would deepen the understanding of size effects on the lanthanide upcon- version in nanocrystals.
基金This research was financially supported by NSFC (No. 29874012) and the Special Funds for Major State Basic Research Projects (95-12 and G1999064800).
文摘In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the average molecular weight M-e between entanglement points and the molecular weight M-mon of repeating unit. The output node is the glass transition temperature T-g, and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting the outcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transition temperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas to investigate other properties of the polymers.
基金Funded by the Natural Science Foundation of Guangdong Prov ince(013013) and the Science and Technology Plan of Guangdong Province(2002B11604)
文摘The integrated absorption cross section Σ abs, peak emis sion cross section σ emi, Judd-Ofeld intensity parameters Ω t(t=2,4,6), and spontaneous emission probability A R of Er 3+ ions were determined fo r Erbium doped alkali and alkaline earth phosphate glasses. It is found the comp ositional dependence of σ emi is almost similar to that of Σ abs, wh ich is determined by the sum of Ω t (3Ω 2+10Ω 4+21Ω 6). In addition, the compositional dependence of Ω t was studied in these glass systems. As a resu lt, compared with Ω 4 and Ω 6, the Ω 2 has a stronger compositional depend ence on the ionic radius and content of modifiers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, alumi nate glass, and tellurate glass, since Ω 6 of phosphate glass is relatively la rge. A R is affected by the covalency of the Er 3+ ion sites and correspon ds to the Ω 6 value.
文摘The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on the irradiated glass at 109 Gy. A sodium-depleted layer with a thickness of a few tens of nanometers and the corresponding increase of network polymerization on the top surface are observed after electron bombardment, while the polymerization in the subsurface region has a negligible variation with the irradiation dose. Moreover, the formation of molecular oxygen after electron irradiation is evidenced, which is mainly aggregated in the first two-micron-thick irradiated glass surface. These modifications are correlated to the network relaxation process as a consequence of the diffusion and desorption of sodium species during electron irradiation.
文摘The synthesis of pseudo- and semi-interpenetrating polymer networks (IPNs) based on polydimethylsiloxane (PDMS) and polystyrene (PS) is described. IPNs were obtained by simultaneous and in situ sequential synthesis procedure. The preliminary studies on IPNs properties such as transition temperature, microphase separation and mechanical behaviors have been carried out by using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The experimental evidence clearly showed that semi-IPNs obtained by sequential synthesis procedure have higher interpenetrating extent than pseudo-IPNs synthesized by simultaneous procedure. Over the full composition, the PDMS/PS IPNs are immiscible. The pseudo-IPNs microphase separation can be greatly subdued through the formation of grafting bonds between two networks as well as the kinetic rate-matching of the individual network crosslinking.
文摘Organoclay-modified hydroxylterminated polysulfone (PSF)/epoxy interpenetrating network nanocomposites (oM-PSF/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polysulfone and epoxy resin (PSF/EP) using diaminodiphenylmethane (DDM) as curing agent.The mechanical properties like tensile strength,tensile modulus,flexural strength,flexural modulus and impact properties of the nanocomposites were studied as per ASTM standards.Different...
文摘Copper-cadmium halide doped photochromic glass coating on plate glass has been prepared by a sol-gel process. The sample shows reversible photochromic effect. The results of X-ray diffraction (XRD) and infrared (IR) spectrum investigations indicate that the photochromic phase of tile coating is CuBr_xCl_(1-x), solid solution, and that the structure network of the coating is connected with the bonds of Si-O-Si, Si-O-B and Si-O-Al.
文摘The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transitions, respectively, were observed. Coordinate field index, which was proposed by deducing from Pauling′s rules on the basis of Zachariasen′s random network theory, can be used to rationalize the remarkable variation in the intensity of upconversion luminescence.
文摘This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN.