L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for...L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.展开更多
Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems,supporting electrolytes and pH using differential paise,square-wave and cyclic voltammetry.Based on its reduction behavior...Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems,supporting electrolytes and pH using differential paise,square-wave and cyclic voltammetry.Based on its reduction behavior,a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage.Three welldefined peaks were observed in 0.1% SLS,Britton-Robinson (BR) buffer of pH 2.5.The effect of surfaetants like sodium lauryl sulfate (SLS),cetyl trimethyl ammonium bromide (CTAB) and Tween 20 was studied.Among these surfactants SLS showed significant enhancement in reduction peak.The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coetfficient of 0.99.展开更多
Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can...Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can not only catalytically oxidize EP and AA, but also separate the catalytic peak potentials of EP and AA by about 183.5 mV. In pH = 7.0 ogisogate byffer solution, the linear range of epinephrine was 5 106 ~ 1 ?10-4 mol/L.展开更多
The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0....The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.105 V versus SCE, the electron transfer rate constant was 4.66 s-1. E^0' of Hb at the modified electrode was linearly varied in a pH range of 5.0-8.0 with a slope of-49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an excellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H2O2 concentration in a range of 1.0× 10^-6 to 2.2× 10^-3 mol/L. The detection limit was 2.0× 10^-7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(Km^app) was 2.95 mmol/L.展开更多
A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with...A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate.The experimental results suggest that the phcniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response.Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987.The limit of detection is 58.31 μg/m L.The modified electrode shows good sensitivity and repeatability.展开更多
The electrochemical behavior of paclitaxel drug was studied at a glassy carbon electrode in phosphate buffer solutions using cyclic and differential-pulse voltammetric techniques.The oxidation process was shown to be ...The electrochemical behavior of paclitaxel drug was studied at a glassy carbon electrode in phosphate buffer solutions using cyclic and differential-pulse voltammetric techniques.The oxidation process was shown to be irreversible over the pH range(3.0e10.4)and was diffusion controlled.Effects of anodic peak potential(E_(p)),anodic peak current(Ipa),scan rate,pH,heterogeneous rate constant(k^(0)),etc have been discussed.A possible electrooxidation mechanism was proposed.An analytical method was developed for the determination of paclitaxel in phosphate buffer solution at pH¼7.0 as a supporting electrolyte.The anodic peak current varied linearly with paclitaxel concentration in the range 1.0×10^-(6)M to 1.0×10^-(5)M with a limit of detection(LOD)of 1.23×10^(-8)M and limit of quantification(LOQ)of 4.10×10^(-8)M.The proposed method was successfully applied to the determination of paclitaxel in pure and real samples.展开更多
The present study reports voltammetric reduction of nitazoxanide in Britton-Robinson (B-R) buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for...The present study reports voltammetric reduction of nitazoxanide in Britton-Robinson (B-R) buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20-140 ~tg/mL. The limit of detection (LOD) and limit of quantification (LOQ) was calculated to be 5.23 la~/mL and 17.45 la~/mL, respectively.展开更多
The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at b...The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small. However, when the electrode was activated at certain potential (i.e. 1.9 V) or modified with carbon nanotube, the peak became more sensitive, resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3×10^-7 - 1.1×10^-5 mol/L at activated glassy carbon electrode and in the range of 1.0×10^-5 - 5.0×10^-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0.998 and 0.997, respectively. The determination limit was 1.0×10^-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.展开更多
A reversible electron transfer between horse heart cytochrome c and a bare glassy carbon electrode was found and the dependence of direct electrochemical behaviotw on the electrode surface state was discussed.
In this paper, the electrochendcal behavior of bavistin (MBC) on glassy carbon electrode is reported. In a base solution of pH=9.0 NH3-NH4Cl, a sensitive anodic peak was found by cyclic voltammetry. Differential pulse...In this paper, the electrochendcal behavior of bavistin (MBC) on glassy carbon electrode is reported. In a base solution of pH=9.0 NH3-NH4Cl, a sensitive anodic peak was found by cyclic voltammetry. Differential pulse stripping voltanunetry was applied for determing MBC in grains. The detection limit is 4×10-8mo/L.The recovery is from 91.3% to 95.7%. The method has advantages of simplicity and high sensitivity.展开更多
In this study, the electrochemical oxidation of CT (catechol), HQ (hydroquinone) and RS (resorcinol) was investigated using cyclic and linear sweep voltammetries at GCE (glassy carbon electrode). The GCE showe...In this study, the electrochemical oxidation of CT (catechol), HQ (hydroquinone) and RS (resorcinol) was investigated using cyclic and linear sweep voltammetries at GCE (glassy carbon electrode). The GCE showed an excellent electro activity and reversibility towards the oxidation of these isomers at different conditions. HQ and CT showed one defined oxidation peak and one defined reduction peak while RS showed one defined oxidation peak. These isomers were determined also in their binary and tertiary mixtures. The calibration curves for CT, HQ and RS were obtained in the ranges of 5 × 10-6 to 1 × 10-3 mol.dm-3, 5 × 10-6 to 5 × 10-4mol.dm-3 and 1 × 10-5 to 1× 10-3 mol.dm-3, respectively. The detection limits were 9 ×10-7, 3 × 10-7, 6 × 10-6 mol.dm3 for CT, HQ and RS, respectively. At the optimal experimental conditions, these isomers were determined in different water samples. Also, the removal of catechol from aqueous solution by adsorption on activated charcoal and alumina was studied. After 24 h, 88.7% and 65.9% of catechol was removed using charcoal and alumina, respectively.展开更多
The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scannin...The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scanning in 0.20 mol/L KOH. Similarly, GC/Co(OH) 2 electrode was prepared too. The experiments showed that the voltammetric behavior of GC/Ni(OH) 2 electrode in 0.20 mol/L KOH is more stable than that of GC/ Co(OH) 2. It was found that the GC/Ni(OH) 2 electrode acts as an effective electrocatalysis for the oxidation of hydrazine.展开更多
A new glassy carbon electrode modified with novel caHx[4]arene derivative was prepared and then applied to the selective recognition of lead ion in aqueous media by cyclic and square wave voltammtry. A new anodic stri...A new glassy carbon electrode modified with novel caHx[4]arene derivative was prepared and then applied to the selective recognition of lead ion in aqueous media by cyclic and square wave voltammtry. A new anodic stripping peak at - 0.92 V (vs. Ag/Ag+) in square wave voltammogram can be obtained by scanning the potential from - 1.5 to - 0.6 V, of which the peak current is proportional to the concentration of Pb2+. The modified electrode in 0.1 moVL HNO3 solution showed a linear voltammetric response in the range of 2.0 x 10(-8)-1.0 x 10(-6) mol/L and a detection limit of 6.1 x 10(-9) mol/L. In the modified glassy carbon electrode no significant interference occurred from alkali, alkaline and transition metal ions except Hg2+, Ag+ and Cu2+ ions, which can be eliminated by the addition of KSCN. The proposed method was successfully applied to determine lead in aqueous samples.展开更多
Nanomolar levels of the hypoxanthine in NaOH electrolyte cantaining copper(Ⅱ) can be determined by anodic stripping voltammetry at a glassy carbon electrode. In the present article hypoxanthine Cu + is shown to be ...Nanomolar levels of the hypoxanthine in NaOH electrolyte cantaining copper(Ⅱ) can be determined by anodic stripping voltammetry at a glassy carbon electrode. In the present article hypoxanthine Cu + is shown to be adsorbed on the electrode surface in the presence of an excess of copper(Ⅱ). After accumulation period, hypoxanthine Cu + was stripped from the electrode surface and the anodic current coming near to the oxidation of Cu(Ⅰ) to Cu(Ⅱ) was measured. A linear calibration curve in the range of 5 nmol/L 1.5 mmol/L hypoxanthine, with a detection limit of 0.5 nmol/L hypoxanthine were obtained.展开更多
A new type of hydrogen peroxide amperometric biosensor was fabricated based on electrochemically deposited sub-micrometer Au particles (sm-Au) on a glassy carbon electrode (GCE). Electrochemical deposition condition w...A new type of hydrogen peroxide amperometric biosensor was fabricated based on electrochemically deposited sub-micrometer Au particles (sm-Au) on a glassy carbon electrode (GCE). Electrochemical deposition condition was optimized for obtaining uniformly distributed sub-micrometer sized Au array on the electrode surface. The hy-drogen peroxide sensor was fabricated by adsorbing phenothiazine methylene blue (MB) molecules on the surface of sm-Au and covering a cross-linked horseradish peroxidase (HRP) layer, labeled as HRP/MB/sm-Au/GCE. The characteristics of this biosensor were evaluated with respect to applied potential and pH. The amperometric re-sponse of the sensor was linear to the H2O2 concentration over a wide range of 9.9×10-61.11×10-2 mol/L. A detection limit (s/n=3) of 3.0×10-6 mol/L H2O2 was estimated for a sampled chronoamperometric detection at 1.5 min after potential step of 200 to -400 mV vs. SCE. The immobilized MB molecules shuttled electrons at a=0.77 and an apparent electron transfer rate constant of 0'sk=0.053 s-1. Interference of ascorbic acid, dopamine and uric acid was investigated. This sensor has very good stability and reproducibility for long-term use.展开更多
In this study,an electrochemical DNA biosensor was developed using a straightforward methodology to investigate the interaction of indinavir with calf thymus double-stranded deoxyribonucleic acid(ctdsDNA)for the first...In this study,an electrochemical DNA biosensor was developed using a straightforward methodology to investigate the interaction of indinavir with calf thymus double-stranded deoxyribonucleic acid(ctdsDNA)for the first time.The decrease in the oxidation signals of deoxyguanosine(dGuo)and deoxyadenosine(dAdo),measured by differential pulse voltammetry,upon incubation with different concentrations of indinavir can be attributed to the binding mode of indinavir to ct-dsDNA.The currents of the dGuo and dAdo peaks decreased linearly with the concentration of indinavir in the range of 1.0 e10.0 mg/mL.The limit of detection and limit of quantification for indinavir were 0.29 and 0.98 mg/mL,respectively,based on the dGuo signal,and 0.23 and 0.78 mg/mL,respectively,based on the dAdo signal.To gain further insights into the interaction mechanism between indinavir and ct-dsDNA,spectroscopic measurements and molecular docking simulations were performed.The binding constant(Kb)between indinavir and ct-dsDNA was calculated to be 1.64108 M1,based on spectrofluorometric measurements.The obtained results can offer insights into the inhibitory activity of indinavir,which could help to broaden its applications.That is,indinavir can be used to inhibit other mechanisms and/or hallmarks of viral diseases.展开更多
The electrochemical and in-situ surface-enhanced Raman spectroscopy (SERS) techniques were used to investigate the electrooxidation behavior of methanol in acidic, neutral and alkaline media at a Pt-Ru nanoparticle ...The electrochemical and in-situ surface-enhanced Raman spectroscopy (SERS) techniques were used to investigate the electrooxidation behavior of methanol in acidic, neutral and alkaline media at a Pt-Ru nanoparticle modified glassy carbon (Pt-Ru/GC) electrode. The results showed that methanol could be dissociated spontaneously at the Pt-Ru/GC electrode to produce a strongly adsorbed intermediate, CO. It was found that CO could be oxidized more easily in the alkaline medium than in the acidic and neutral media. The peak potential of methanol oxidation was shifted from 0.663 and 0.708 V in the acidic and neutral media to -0.030 V in the alkaline medium, which is due to that the adsorption strength of CO on the Pt surface in the alkaline medium is weaker than that in the acidic and neutral media. The final product of the methanol oxidation is CO2. However, in the alkaline medium, CO2 produced would form CO3^2- and HCO3^- resulting in the decrease in the alkaline concentration and then in the decrease in the performance of DMFC. Therefore, the performance of the alkaline DMFC is not Stable.展开更多
In this study,Au nanoparticles/poly 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid film modified glassy carbon electrode(AuNPs/poly(NDI)/GCE) has shown excellent electrocatalytic activity toward the oxid...In this study,Au nanoparticles/poly 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid film modified glassy carbon electrode(AuNPs/poly(NDI)/GCE) has shown excellent electrocatalytic activity toward the oxidation of adrenaline(ADR),paracetamol(PAC),and tryptophan(Trp).The bare glassy carbon electrode(GCE) fails to separate the oxidation peak potentials of these molecules,while the poly(NDI) film modified electrode can resolve them.Electrochemical impedance spectroscopy(EIS)indicates that the charge transfer resistance of the bare electrode decreases as 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid is electropolymerized on the bare electrode.Furthermore,EIS exhibits enhancement of electron transfer kinetics between analytes and the electrode after electrodeposition of Au nanoparticles.Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 0.01-680.0 μmol L^-1 for ADR,0.05-498.0 μmol L^-1 for PAC,and 3.0-632.0 μmol L^-1 for Trp;with detection limits(S/N = 3) of 0.009 μmol L^-1,0.005 μmol L^-1,and 0.09 μmol L^-1 for ADR,PAC,and Trp,respectively.The proposed method has been successfully applied for simultaneous determination of ADR,PAC,and Trp in biological samples.展开更多
文摘L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.
文摘Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems,supporting electrolytes and pH using differential paise,square-wave and cyclic voltammetry.Based on its reduction behavior,a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage.Three welldefined peaks were observed in 0.1% SLS,Britton-Robinson (BR) buffer of pH 2.5.The effect of surfaetants like sodium lauryl sulfate (SLS),cetyl trimethyl ammonium bromide (CTAB) and Tween 20 was studied.Among these surfactants SLS showed significant enhancement in reduction peak.The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coetfficient of 0.99.
基金The authors gratefully acknowledge financial support from the Natural Science Foundation of Anhui Province and the Natural Science Foundation of Anhui Education Committee.
文摘Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can not only catalytically oxidize EP and AA, but also separate the catalytic peak potentials of EP and AA by about 183.5 mV. In pH = 7.0 ogisogate byffer solution, the linear range of epinephrine was 5 106 ~ 1 ?10-4 mol/L.
基金Supported by the National Natural Science Foundation of China(No.20605009)
文摘The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.105 V versus SCE, the electron transfer rate constant was 4.66 s-1. E^0' of Hb at the modified electrode was linearly varied in a pH range of 5.0-8.0 with a slope of-49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an excellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H2O2 concentration in a range of 1.0× 10^-6 to 2.2× 10^-3 mol/L. The detection limit was 2.0× 10^-7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(Km^app) was 2.95 mmol/L.
文摘A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate.The experimental results suggest that the phcniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response.Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987.The limit of detection is 58.31 μg/m L.The modified electrode shows good sensitivity and repeatability.
基金One of the author(J.I.Gowda)thanks UGC,New Delhi,for the award of Research Fellowship in Science for Meritorious Stu-dents(RFSMS).
文摘The electrochemical behavior of paclitaxel drug was studied at a glassy carbon electrode in phosphate buffer solutions using cyclic and differential-pulse voltammetric techniques.The oxidation process was shown to be irreversible over the pH range(3.0e10.4)and was diffusion controlled.Effects of anodic peak potential(E_(p)),anodic peak current(Ipa),scan rate,pH,heterogeneous rate constant(k^(0)),etc have been discussed.A possible electrooxidation mechanism was proposed.An analytical method was developed for the determination of paclitaxel in phosphate buffer solution at pH¼7.0 as a supporting electrolyte.The anodic peak current varied linearly with paclitaxel concentration in the range 1.0×10^-(6)M to 1.0×10^-(5)M with a limit of detection(LOD)of 1.23×10^(-8)M and limit of quantification(LOQ)of 4.10×10^(-8)M.The proposed method was successfully applied to the determination of paclitaxel in pure and real samples.
文摘The present study reports voltammetric reduction of nitazoxanide in Britton-Robinson (B-R) buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20-140 ~tg/mL. The limit of detection (LOD) and limit of quantification (LOQ) was calculated to be 5.23 la~/mL and 17.45 la~/mL, respectively.
文摘The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small. However, when the electrode was activated at certain potential (i.e. 1.9 V) or modified with carbon nanotube, the peak became more sensitive, resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3×10^-7 - 1.1×10^-5 mol/L at activated glassy carbon electrode and in the range of 1.0×10^-5 - 5.0×10^-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0.998 and 0.997, respectively. The determination limit was 1.0×10^-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.
文摘A reversible electron transfer between horse heart cytochrome c and a bare glassy carbon electrode was found and the dependence of direct electrochemical behaviotw on the electrode surface state was discussed.
文摘In this paper, the electrochendcal behavior of bavistin (MBC) on glassy carbon electrode is reported. In a base solution of pH=9.0 NH3-NH4Cl, a sensitive anodic peak was found by cyclic voltammetry. Differential pulse stripping voltanunetry was applied for determing MBC in grains. The detection limit is 4×10-8mo/L.The recovery is from 91.3% to 95.7%. The method has advantages of simplicity and high sensitivity.
文摘In this study, the electrochemical oxidation of CT (catechol), HQ (hydroquinone) and RS (resorcinol) was investigated using cyclic and linear sweep voltammetries at GCE (glassy carbon electrode). The GCE showed an excellent electro activity and reversibility towards the oxidation of these isomers at different conditions. HQ and CT showed one defined oxidation peak and one defined reduction peak while RS showed one defined oxidation peak. These isomers were determined also in their binary and tertiary mixtures. The calibration curves for CT, HQ and RS were obtained in the ranges of 5 × 10-6 to 1 × 10-3 mol.dm-3, 5 × 10-6 to 5 × 10-4mol.dm-3 and 1 × 10-5 to 1× 10-3 mol.dm-3, respectively. The detection limits were 9 ×10-7, 3 × 10-7, 6 × 10-6 mol.dm3 for CT, HQ and RS, respectively. At the optimal experimental conditions, these isomers were determined in different water samples. Also, the removal of catechol from aqueous solution by adsorption on activated charcoal and alumina was studied. After 24 h, 88.7% and 65.9% of catechol was removed using charcoal and alumina, respectively.
文摘The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scanning in 0.20 mol/L KOH. Similarly, GC/Co(OH) 2 electrode was prepared too. The experiments showed that the voltammetric behavior of GC/Ni(OH) 2 electrode in 0.20 mol/L KOH is more stable than that of GC/ Co(OH) 2. It was found that the GC/Ni(OH) 2 electrode acts as an effective electrocatalysis for the oxidation of hydrazine.
文摘A new glassy carbon electrode modified with novel caHx[4]arene derivative was prepared and then applied to the selective recognition of lead ion in aqueous media by cyclic and square wave voltammtry. A new anodic stripping peak at - 0.92 V (vs. Ag/Ag+) in square wave voltammogram can be obtained by scanning the potential from - 1.5 to - 0.6 V, of which the peak current is proportional to the concentration of Pb2+. The modified electrode in 0.1 moVL HNO3 solution showed a linear voltammetric response in the range of 2.0 x 10(-8)-1.0 x 10(-6) mol/L and a detection limit of 6.1 x 10(-9) mol/L. In the modified glassy carbon electrode no significant interference occurred from alkali, alkaline and transition metal ions except Hg2+, Ag+ and Cu2+ ions, which can be eliminated by the addition of KSCN. The proposed method was successfully applied to determine lead in aqueous samples.
文摘Nanomolar levels of the hypoxanthine in NaOH electrolyte cantaining copper(Ⅱ) can be determined by anodic stripping voltammetry at a glassy carbon electrode. In the present article hypoxanthine Cu + is shown to be adsorbed on the electrode surface in the presence of an excess of copper(Ⅱ). After accumulation period, hypoxanthine Cu + was stripped from the electrode surface and the anodic current coming near to the oxidation of Cu(Ⅰ) to Cu(Ⅱ) was measured. A linear calibration curve in the range of 5 nmol/L 1.5 mmol/L hypoxanthine, with a detection limit of 0.5 nmol/L hypoxanthine were obtained.
文摘A new type of hydrogen peroxide amperometric biosensor was fabricated based on electrochemically deposited sub-micrometer Au particles (sm-Au) on a glassy carbon electrode (GCE). Electrochemical deposition condition was optimized for obtaining uniformly distributed sub-micrometer sized Au array on the electrode surface. The hy-drogen peroxide sensor was fabricated by adsorbing phenothiazine methylene blue (MB) molecules on the surface of sm-Au and covering a cross-linked horseradish peroxidase (HRP) layer, labeled as HRP/MB/sm-Au/GCE. The characteristics of this biosensor were evaluated with respect to applied potential and pH. The amperometric re-sponse of the sensor was linear to the H2O2 concentration over a wide range of 9.9×10-61.11×10-2 mol/L. A detection limit (s/n=3) of 3.0×10-6 mol/L H2O2 was estimated for a sampled chronoamperometric detection at 1.5 min after potential step of 200 to -400 mV vs. SCE. The immobilized MB molecules shuttled electrons at a=0.77 and an apparent electron transfer rate constant of 0'sk=0.053 s-1. Interference of ascorbic acid, dopamine and uric acid was investigated. This sensor has very good stability and reproducibility for long-term use.
文摘In this study,an electrochemical DNA biosensor was developed using a straightforward methodology to investigate the interaction of indinavir with calf thymus double-stranded deoxyribonucleic acid(ctdsDNA)for the first time.The decrease in the oxidation signals of deoxyguanosine(dGuo)and deoxyadenosine(dAdo),measured by differential pulse voltammetry,upon incubation with different concentrations of indinavir can be attributed to the binding mode of indinavir to ct-dsDNA.The currents of the dGuo and dAdo peaks decreased linearly with the concentration of indinavir in the range of 1.0 e10.0 mg/mL.The limit of detection and limit of quantification for indinavir were 0.29 and 0.98 mg/mL,respectively,based on the dGuo signal,and 0.23 and 0.78 mg/mL,respectively,based on the dAdo signal.To gain further insights into the interaction mechanism between indinavir and ct-dsDNA,spectroscopic measurements and molecular docking simulations were performed.The binding constant(Kb)between indinavir and ct-dsDNA was calculated to be 1.64108 M1,based on spectrofluorometric measurements.The obtained results can offer insights into the inhibitory activity of indinavir,which could help to broaden its applications.That is,indinavir can be used to inhibit other mechanisms and/or hallmarks of viral diseases.
文摘The electrochemical and in-situ surface-enhanced Raman spectroscopy (SERS) techniques were used to investigate the electrooxidation behavior of methanol in acidic, neutral and alkaline media at a Pt-Ru nanoparticle modified glassy carbon (Pt-Ru/GC) electrode. The results showed that methanol could be dissociated spontaneously at the Pt-Ru/GC electrode to produce a strongly adsorbed intermediate, CO. It was found that CO could be oxidized more easily in the alkaline medium than in the acidic and neutral media. The peak potential of methanol oxidation was shifted from 0.663 and 0.708 V in the acidic and neutral media to -0.030 V in the alkaline medium, which is due to that the adsorption strength of CO on the Pt surface in the alkaline medium is weaker than that in the acidic and neutral media. The final product of the methanol oxidation is CO2. However, in the alkaline medium, CO2 produced would form CO3^2- and HCO3^- resulting in the decrease in the alkaline concentration and then in the decrease in the performance of DMFC. Therefore, the performance of the alkaline DMFC is not Stable.
文摘In this study,Au nanoparticles/poly 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid film modified glassy carbon electrode(AuNPs/poly(NDI)/GCE) has shown excellent electrocatalytic activity toward the oxidation of adrenaline(ADR),paracetamol(PAC),and tryptophan(Trp).The bare glassy carbon electrode(GCE) fails to separate the oxidation peak potentials of these molecules,while the poly(NDI) film modified electrode can resolve them.Electrochemical impedance spectroscopy(EIS)indicates that the charge transfer resistance of the bare electrode decreases as 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid is electropolymerized on the bare electrode.Furthermore,EIS exhibits enhancement of electron transfer kinetics between analytes and the electrode after electrodeposition of Au nanoparticles.Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 0.01-680.0 μmol L^-1 for ADR,0.05-498.0 μmol L^-1 for PAC,and 3.0-632.0 μmol L^-1 for Trp;with detection limits(S/N = 3) of 0.009 μmol L^-1,0.005 μmol L^-1,and 0.09 μmol L^-1 for ADR,PAC,and Trp,respectively.The proposed method has been successfully applied for simultaneous determination of ADR,PAC,and Trp in biological samples.