Waterborne organic pollutants pose significant threats to ecosystems and the health of billions worldwide,presenting a pressing global challenge.Advanced oxidation processes(AOPs)offer promise for efficient wastewater...Waterborne organic pollutants pose significant threats to ecosystems and the health of billions worldwide,presenting a pressing global challenge.Advanced oxidation processes(AOPs)offer promise for efficient wastewater treatment,yet the efficacy and the reliability of current environmental catalysts hinder their widespread adoption.This study developed an as-cast nanostructured glassy fiber capable of rapidly activating persulfate and achieved the degradation of diverse organic contaminants within 60 s using the as-prepared fiber.The material is relatively robust and can be reused about 40 times.The exceptional catalytic performance of the fibers stemmed from their low atomic coordination numbers,which facilitated the generation of numerous unsaturated active sites and accelerated radical production rates through a one-electron transfer mechanism.Additionally,the glassy-nanocrystalline heterogeneous interface,achieved through our proposed nanostructur-alization approach,exhibited electron delocalization behavior.This enhanced persulfate adsorption and reduced the energy barrier for heterolytic cleavage of peroxy bonds.These findings present a novel avenue for the rational structural design of high-performance environmental catalysts for advanced water remediation.展开更多
The development of new design strategies to create innovative structural materials,refine existing ones,and achieves compatible combinations of strength and plasticity remains a worldwide goal.Promising alloys,such as...The development of new design strategies to create innovative structural materials,refine existing ones,and achieves compatible combinations of strength and plasticity remains a worldwide goal.Promising alloys,such as shape memory alloys(SMAs),bulk metallic glasses(BMGs),high entropy alloys(HEAs),and heterogeneous pure metals such as Cu,have excellent mechanical responses,but they still fall short of meeting all the requirements of structural materials due to specific flaws,such as lack of tensile de-formation for BMGs and low yielding strength for HEAs.To address these shortcomings,proposals such as integrating glassy matrices and crystallized alloys,such as HEAs/SMAs,have been suggested.However,these solutions have unresolved issues,such as the challenging control of B2 phase formation in BMG composites.Recently,glass-crystal(A/C)laminated alloys with alternating layers have been reported to exhibit improved mechanical properties and activated work-hardening behaviors,but they still face press-ing issues such as bonding interfaces and unknown deformation mechanisms.This review focuses on design routes such as the selection of alloy components and processing techniques,exploration of micro-structural evolution and deformation modes with an increase in strain,and future solutions to address pressing and unsolved issues.These prominent advantages include diversified deformation mechanisms,such as deformation twinning,martensitic phase transformation,and precipitation hardening,as well as tuned interactive reactions of shear bands(SBs)near the A/C interfaces.Thus,this review provides a promising pathway to design and develop structural materials in the materials field community.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52271028,52201174,12002108,52071118,51827801)the China Postdoctoral Science Foundation(Grant Nos.2019M661275 and 2020T130030ZX)+5 种基金the National Key Research and Development Program of China(Grant No.2022YFA1604600)the Funds of Frontier Research Center of Space Environment Interacting with Matter(Harbin Institute of Technology)the Natural Science Foundation of Heilongjian Province(Grant No.LH2022D017)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220858)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011402)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRET.2023FRFK06001).
文摘Waterborne organic pollutants pose significant threats to ecosystems and the health of billions worldwide,presenting a pressing global challenge.Advanced oxidation processes(AOPs)offer promise for efficient wastewater treatment,yet the efficacy and the reliability of current environmental catalysts hinder their widespread adoption.This study developed an as-cast nanostructured glassy fiber capable of rapidly activating persulfate and achieved the degradation of diverse organic contaminants within 60 s using the as-prepared fiber.The material is relatively robust and can be reused about 40 times.The exceptional catalytic performance of the fibers stemmed from their low atomic coordination numbers,which facilitated the generation of numerous unsaturated active sites and accelerated radical production rates through a one-electron transfer mechanism.Additionally,the glassy-nanocrystalline heterogeneous interface,achieved through our proposed nanostructur-alization approach,exhibited electron delocalization behavior.This enhanced persulfate adsorption and reduced the energy barrier for heterolytic cleavage of peroxy bonds.These findings present a novel avenue for the rational structural design of high-performance environmental catalysts for advanced water remediation.
基金supported by the China National Natural Science Foundation(No.52071217)the Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots.
文摘The development of new design strategies to create innovative structural materials,refine existing ones,and achieves compatible combinations of strength and plasticity remains a worldwide goal.Promising alloys,such as shape memory alloys(SMAs),bulk metallic glasses(BMGs),high entropy alloys(HEAs),and heterogeneous pure metals such as Cu,have excellent mechanical responses,but they still fall short of meeting all the requirements of structural materials due to specific flaws,such as lack of tensile de-formation for BMGs and low yielding strength for HEAs.To address these shortcomings,proposals such as integrating glassy matrices and crystallized alloys,such as HEAs/SMAs,have been suggested.However,these solutions have unresolved issues,such as the challenging control of B2 phase formation in BMG composites.Recently,glass-crystal(A/C)laminated alloys with alternating layers have been reported to exhibit improved mechanical properties and activated work-hardening behaviors,but they still face press-ing issues such as bonding interfaces and unknown deformation mechanisms.This review focuses on design routes such as the selection of alloy components and processing techniques,exploration of micro-structural evolution and deformation modes with an increase in strain,and future solutions to address pressing and unsolved issues.These prominent advantages include diversified deformation mechanisms,such as deformation twinning,martensitic phase transformation,and precipitation hardening,as well as tuned interactive reactions of shear bands(SBs)near the A/C interfaces.Thus,this review provides a promising pathway to design and develop structural materials in the materials field community.