The Gleason grade group(GG)is an important basis for assessing the malignancy of prostate can-cer,but it requires invasive biopsy to obtain pathology.To noninvasively evaluate GG,an automatic prediction method is prop...The Gleason grade group(GG)is an important basis for assessing the malignancy of prostate can-cer,but it requires invasive biopsy to obtain pathology.To noninvasively evaluate GG,an automatic prediction method is proposed based on multi-scale convolutional neural network of the ensemble attention module trained with curriculum learning.First,a lesion-attention map based on the image of the region of interest is proposed in combination with the bottleneck attention module to make the network more focus on the lesion area.Second,the feature pyramid network is combined to make the network better learn the multi-scale information of the lesion area.Finally,in the network training,a curriculum based on the consistency gap between the visual evaluation and the pathological grade is proposed,which further improves the prediction performance of the network.Ex-perimental results show that the proposed method is better than the traditional network model in predicting GG performance.The quadratic weighted Kappa is 0.4711 and the positive predictive value for predicting clinically significant cancer is 0.9369.展开更多
基金Foundation item:the Suzhou Municipal Health and Family Planning Commission's Key Diseases Diagnosis and Treatment Program(No.LCzX202001)the Science and Technology Development Project ofSuzhou(Nos.SS2019012andSKY2021031)+1 种基金the Youth Innovation Promotion Association CAS(No.2021324)the Medical Research Project of Jiangsu Provincial Health and Family Planning Commission(No.M2020068)。
文摘The Gleason grade group(GG)is an important basis for assessing the malignancy of prostate can-cer,but it requires invasive biopsy to obtain pathology.To noninvasively evaluate GG,an automatic prediction method is proposed based on multi-scale convolutional neural network of the ensemble attention module trained with curriculum learning.First,a lesion-attention map based on the image of the region of interest is proposed in combination with the bottleneck attention module to make the network more focus on the lesion area.Second,the feature pyramid network is combined to make the network better learn the multi-scale information of the lesion area.Finally,in the network training,a curriculum based on the consistency gap between the visual evaluation and the pathological grade is proposed,which further improves the prediction performance of the network.Ex-perimental results show that the proposed method is better than the traditional network model in predicting GG performance.The quadratic weighted Kappa is 0.4711 and the positive predictive value for predicting clinically significant cancer is 0.9369.