Pitx3 is strongly associated with the phenotype, differentiation, and survival of dopaminergic neurons. The relationship between Pitx3 and glial cell line-derived neurotrophic factor(GDNF) in dopaminergic neurons re...Pitx3 is strongly associated with the phenotype, differentiation, and survival of dopaminergic neurons. The relationship between Pitx3 and glial cell line-derived neurotrophic factor(GDNF) in dopaminergic neurons remains poorly understood. The present investigation sought to construct and screen a lentivirus expression plasmid carrying a rat Pitx3 short hairpin(sh)RNA and to assess the impact of Pitx3 gene knockdown on GDNF transcriptional activity in MES23.5 dopaminergic neurons. Three pairs of interference sequences were designed and separately ligated into GV102 expression vectors. These recombinant plasmids were transfected into MES23.5 cells and western blot assays were performed to detect Pitx3 protein expression. Finally, the most effective Pitx3 sh RNA and a dual-luciferase reporter gene plasmid carrying the GDNF promoter region(GDNF-luciferase) were cotransfected into MES23.5 cells. Sequencing showed that the synthesized sequences were identical to the three Pitx3 interference sequences. Inverted fluorescence microscopy revealed that the lentivirus expression plasmids carrying Pitx3-sh RNA had 40-50% transfection efficiency. Western blot assay confirmed that the corresponding Pitx3 of the third knockdown sequence had the lowest expression level. Dual-luciferase reporter gene results showed that the GDNF transcriptional activity in dopaminergic cells cotransfected with both plasmids was decreased compared with those transfected with GDNF-luciferase alone. Together, the results showed that the designed Pitx3-sh RNA interference sequence decreased Pitx3 protein expression, which decreased GDNF transcriptional activity.展开更多
BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher diff...BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression.展开更多
Objective:To investigate the interference and expression of human glial cell line-derived neurotrophic factor(hCDNF) and soluble TNF alpha(sTMFRⅠ) receptor genes in neural stem cells and to evaluate the roles of thes...Objective:To investigate the interference and expression of human glial cell line-derived neurotrophic factor(hCDNF) and soluble TNF alpha(sTMFRⅠ) receptor genes in neural stem cells and to evaluate the roles of these proteins in the genetic treatment of spinal cord injury.Methods:Full-length of GDNF cDNA(538 bp) and sTMFRⅠcDNA(504 bp) were inserted into the early 1 region of adenovirus genomic DNA respectively and were immediated by the human cytomegalovirus(gene promoter/enhancer). These adenoviruses were propagated in HEK293 cells via homologous recombination for 7-10 days in vivo,then they were used to infect human neural stem ceils.The infection and expression of gene were tested under immunofluorescence.ELISA and Westem-blot after 48 hours.Results:Almost all the cultured cells showed the nestin immunofluorescence positive staining,which was the characteristics of neural stem cell.A great quantity of EGFP and KFP were observed in neural stem cells,which indicated the expression of GDNF and sTMFRⅠ.After transfection of GDNF and sTMFRⅠgenes,many neural stem cells show GFAP and tubulin immunofluorescence positive staining,which meant that most neural stem cells differentiated into neuron at that condition.Conclusions:The infective efficiency of adenovirus is greatly acceptable to neural stem cell,thus adenovirus provide a useful vector for exogenous GDNF and sTMFRⅠgenes expressing in neural stem cells,which is useful for differentiation of neural stem cell.展开更多
Glial cell line-derived neurotrophic factor(GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain,α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neu...Glial cell line-derived neurotrophic factor(GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain,α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neuroprotective effects on dopamine neurons. However, the expression of the GDNF splice variants in dopaminergic neurons in the brain remains unclear. Therefore, in this study, we investigated the mRNA and protein expression of α-and β-pro-GDNF in the mouse brain by real-time quantitative polymerase chain reaction, using splice variant-specific primers, and western blot analysis. At the mRNA level,β-pro-GDNF expression was significantly greater than that of α-pro-GDNF in the mouse brain. In contrast, at the protein level,α-pro-GDNF expression was markedly greater than that of β-pro-GDNF. To clarify the mechanism underlying this inverse relationship in mRNA and protein expression levels of the GDNF splice variants, we analyzed the expression of sorting protein-related receptor with A-type repeats(SorLA) by real-time quantitative polymerase chain reaction. At the mRNA level, SorLA was positively associated with β-pro-GDNF expression, but not with α-pro-GDNF expression. This suggests that the differential expression of α-and β-pro-GDNF in the mouse brain is related to SorLA expression. As a sorting protein, SorLA could contribute to the inverse relationship among the mRNA and protein levels of the GDNF isoforms. This study was approved by the Animal Ethics Committee of Xuzhou Medical University, China on July 14, 2016.展开更多
Objectives: To analyze the expression and significance of glial cell derived neurotrophic factor (GDNF) in the recovery of spermato genesis in mice. Methods: Adult Kunming mice were injected in traperitoneally with 2 ...Objectives: To analyze the expression and significance of glial cell derived neurotrophic factor (GDNF) in the recovery of spermato genesis in mice. Methods: Adult Kunming mice were injected in traperitoneally with 2 doses of busulfan (10 mg/kg) 24 days apart so as to establish the spermatogenesis recovery modei. Testes were harvested at weeks l, 2, 3,4, 6, 8 and 10 after the second injection. Eight normai mice served as the controls. Recovery of spermatoge nesis was observed by light and electron microscopy and the GDNF mRNA measured by semi-quantitative RT-PCR and in situ hybridization. Results: After the second injection the expression of GDNF mRNA was increased significantly at week l and reached its peak at week 2. It was then decreased significantly at week 3 and reached its valley at week 4. After that it was increased gradu ally and recovered at week 10. GDNF mRNA was mainly ex pressed by the Sertoli celis. Conclusion: In the course of recovery of spermatogenesis, a high Ievel of GDNF expression plays a key role in the promotion of self-renewal and maintenance of the num ber of spermatogonial stem celis.展开更多
基金supported by the National Natural Science Foundation of China,No.81372698
文摘Pitx3 is strongly associated with the phenotype, differentiation, and survival of dopaminergic neurons. The relationship between Pitx3 and glial cell line-derived neurotrophic factor(GDNF) in dopaminergic neurons remains poorly understood. The present investigation sought to construct and screen a lentivirus expression plasmid carrying a rat Pitx3 short hairpin(sh)RNA and to assess the impact of Pitx3 gene knockdown on GDNF transcriptional activity in MES23.5 dopaminergic neurons. Three pairs of interference sequences were designed and separately ligated into GV102 expression vectors. These recombinant plasmids were transfected into MES23.5 cells and western blot assays were performed to detect Pitx3 protein expression. Finally, the most effective Pitx3 sh RNA and a dual-luciferase reporter gene plasmid carrying the GDNF promoter region(GDNF-luciferase) were cotransfected into MES23.5 cells. Sequencing showed that the synthesized sequences were identical to the three Pitx3 interference sequences. Inverted fluorescence microscopy revealed that the lentivirus expression plasmids carrying Pitx3-sh RNA had 40-50% transfection efficiency. Western blot assay confirmed that the corresponding Pitx3 of the third knockdown sequence had the lowest expression level. Dual-luciferase reporter gene results showed that the GDNF transcriptional activity in dopaminergic cells cotransfected with both plasmids was decreased compared with those transfected with GDNF-luciferase alone. Together, the results showed that the designed Pitx3-sh RNA interference sequence decreased Pitx3 protein expression, which decreased GDNF transcriptional activity.
基金the Natural Science Foundation of Jiangsu Department of Education, No. 02KJB310009
文摘BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression.
基金Shenzhen Science and Technology Project(No.201103061)
文摘Objective:To investigate the interference and expression of human glial cell line-derived neurotrophic factor(hCDNF) and soluble TNF alpha(sTMFRⅠ) receptor genes in neural stem cells and to evaluate the roles of these proteins in the genetic treatment of spinal cord injury.Methods:Full-length of GDNF cDNA(538 bp) and sTMFRⅠcDNA(504 bp) were inserted into the early 1 region of adenovirus genomic DNA respectively and were immediated by the human cytomegalovirus(gene promoter/enhancer). These adenoviruses were propagated in HEK293 cells via homologous recombination for 7-10 days in vivo,then they were used to infect human neural stem ceils.The infection and expression of gene were tested under immunofluorescence.ELISA and Westem-blot after 48 hours.Results:Almost all the cultured cells showed the nestin immunofluorescence positive staining,which was the characteristics of neural stem cell.A great quantity of EGFP and KFP were observed in neural stem cells,which indicated the expression of GDNF and sTMFRⅠ.After transfection of GDNF and sTMFRⅠgenes,many neural stem cells show GFAP and tubulin immunofluorescence positive staining,which meant that most neural stem cells differentiated into neuron at that condition.Conclusions:The infective efficiency of adenovirus is greatly acceptable to neural stem cell,thus adenovirus provide a useful vector for exogenous GDNF and sTMFRⅠgenes expressing in neural stem cells,which is useful for differentiation of neural stem cell.
基金supported by the National Natural Science Foundation of China,No.81772688(to DSG)the Postdoctoral Science Foundation of Jiangsu Province of China,No.1202119C(to HL)
文摘Glial cell line-derived neurotrophic factor(GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain,α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neuroprotective effects on dopamine neurons. However, the expression of the GDNF splice variants in dopaminergic neurons in the brain remains unclear. Therefore, in this study, we investigated the mRNA and protein expression of α-and β-pro-GDNF in the mouse brain by real-time quantitative polymerase chain reaction, using splice variant-specific primers, and western blot analysis. At the mRNA level,β-pro-GDNF expression was significantly greater than that of α-pro-GDNF in the mouse brain. In contrast, at the protein level,α-pro-GDNF expression was markedly greater than that of β-pro-GDNF. To clarify the mechanism underlying this inverse relationship in mRNA and protein expression levels of the GDNF splice variants, we analyzed the expression of sorting protein-related receptor with A-type repeats(SorLA) by real-time quantitative polymerase chain reaction. At the mRNA level, SorLA was positively associated with β-pro-GDNF expression, but not with α-pro-GDNF expression. This suggests that the differential expression of α-and β-pro-GDNF in the mouse brain is related to SorLA expression. As a sorting protein, SorLA could contribute to the inverse relationship among the mRNA and protein levels of the GDNF isoforms. This study was approved by the Animal Ethics Committee of Xuzhou Medical University, China on July 14, 2016.
文摘Objectives: To analyze the expression and significance of glial cell derived neurotrophic factor (GDNF) in the recovery of spermato genesis in mice. Methods: Adult Kunming mice were injected in traperitoneally with 2 doses of busulfan (10 mg/kg) 24 days apart so as to establish the spermatogenesis recovery modei. Testes were harvested at weeks l, 2, 3,4, 6, 8 and 10 after the second injection. Eight normai mice served as the controls. Recovery of spermatoge nesis was observed by light and electron microscopy and the GDNF mRNA measured by semi-quantitative RT-PCR and in situ hybridization. Results: After the second injection the expression of GDNF mRNA was increased significantly at week l and reached its peak at week 2. It was then decreased significantly at week 3 and reached its valley at week 4. After that it was increased gradu ally and recovered at week 10. GDNF mRNA was mainly ex pressed by the Sertoli celis. Conclusion: In the course of recovery of spermatogenesis, a high Ievel of GDNF expression plays a key role in the promotion of self-renewal and maintenance of the num ber of spermatogonial stem celis.