Background Tumor surgery in brain motor functional areas remains challenging. Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery. Herein, we assessed the magnetic resonance...Background Tumor surgery in brain motor functional areas remains challenging. Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery. Herein, we assessed the magnetic resonance diffusion tensor imaging (MR-DTI) and fluorescein sodium dyeing (FLS) guiding technique for surgery of glioma located in brain motor functional areas. Methods Totally 83 patients were enrolled according to our inclusion and exclusion criteria (56 patients in experimental group, 27 patients in control group). In the experimental group, the surgical approach was designed by DTI imaging, which showed the relationship between the tumor and motor tract. The range of resection in the operation was determined using the FLS-stained area, which recognized the tumor and its infiltrated tissue. The traditional routine method was used in the control group. Postoperatively, all patients underwent enhanced brain MRI within 72 hours to ascertain the extent of resection. Patients were followed in our outpatient clinic over 6-24 months. Neurological deficits and Karnofsky scoring (KPS) were evaluated. Results There were no significant differences in balance test indexes of preoperative data (sex, age, lesion location and volume, and neurological deficits before operation) and diagnosis of histopathology between the two groups. There was a trend in the experimental group for greater rates of gross total resection (80.4% vs. 40.7%), and the paralysis rate caused by surgery was lower in experimental (25.0%) vs. control (66.7%) groups (P 〈0.05). The 6-month KPS in the low-grade and high-grade gliomas was 91+11 and 73+26, respectively, in the experimental group vs. 82+9 and 43+27, respectively, in the control group (P 〈0.05 for both). Conclusions MR-DTI and FLS dye guiding for surgery of glioma located in brain motor functional areas can increase the gross total resection rate, decrease the paralysis rate caused by surgery, and improve patient quality of life compared with traditional glioma surgery.展开更多
Background Resent advances on functional mapping have enabled us to conduct surgery on gliomas within the eloquent area. The objective of the article is to discuss the feasibility of a planned fractionated strategy of...Background Resent advances on functional mapping have enabled us to conduct surgery on gliomas within the eloquent area. The objective of the article is to discuss the feasibility of a planned fractionated strategy of resection on low-grade gliomas (LGGs) involving Broca's area. We report the first surgical series of planned fractionated resections on LGGs within Broca's area, focusing on language functional reshaping. Methods Four patients were treated with fractionated operations for LGGs involving Broca's area. All cases underwent conventional magnetic resonance (MR) scanning, language functional MR and diffusion tensor imaging (DTI) before operation. The resections were then performed on patients under awake anesthesia using intraoperative electrical stimulation (IES) for functional mapping. Pre- and post-operative neuro-psychological examinations were evaluated.Results Total resections were achieved in all cases as confirmed by the postoperative control MR. After transient language worsening, all patients recovered to normal 3-6 months later. Language functional MR scannings have shown language functional cortical and subcortical pathway reorganization (in the perilesion or contra-lateral hemisphere) after the operation. All patients returned to a normal socioprofessional life. Conclusions By utilizing the dynamic interaction between brain plasticity and fractionated resections, we can totally remove the tumor involving Broca's structure without inducing permanent postoperative deficits and even improve the quality of life.展开更多
文摘Background Tumor surgery in brain motor functional areas remains challenging. Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery. Herein, we assessed the magnetic resonance diffusion tensor imaging (MR-DTI) and fluorescein sodium dyeing (FLS) guiding technique for surgery of glioma located in brain motor functional areas. Methods Totally 83 patients were enrolled according to our inclusion and exclusion criteria (56 patients in experimental group, 27 patients in control group). In the experimental group, the surgical approach was designed by DTI imaging, which showed the relationship between the tumor and motor tract. The range of resection in the operation was determined using the FLS-stained area, which recognized the tumor and its infiltrated tissue. The traditional routine method was used in the control group. Postoperatively, all patients underwent enhanced brain MRI within 72 hours to ascertain the extent of resection. Patients were followed in our outpatient clinic over 6-24 months. Neurological deficits and Karnofsky scoring (KPS) were evaluated. Results There were no significant differences in balance test indexes of preoperative data (sex, age, lesion location and volume, and neurological deficits before operation) and diagnosis of histopathology between the two groups. There was a trend in the experimental group for greater rates of gross total resection (80.4% vs. 40.7%), and the paralysis rate caused by surgery was lower in experimental (25.0%) vs. control (66.7%) groups (P 〈0.05). The 6-month KPS in the low-grade and high-grade gliomas was 91+11 and 73+26, respectively, in the experimental group vs. 82+9 and 43+27, respectively, in the control group (P 〈0.05 for both). Conclusions MR-DTI and FLS dye guiding for surgery of glioma located in brain motor functional areas can increase the gross total resection rate, decrease the paralysis rate caused by surgery, and improve patient quality of life compared with traditional glioma surgery.
文摘Background Resent advances on functional mapping have enabled us to conduct surgery on gliomas within the eloquent area. The objective of the article is to discuss the feasibility of a planned fractionated strategy of resection on low-grade gliomas (LGGs) involving Broca's area. We report the first surgical series of planned fractionated resections on LGGs within Broca's area, focusing on language functional reshaping. Methods Four patients were treated with fractionated operations for LGGs involving Broca's area. All cases underwent conventional magnetic resonance (MR) scanning, language functional MR and diffusion tensor imaging (DTI) before operation. The resections were then performed on patients under awake anesthesia using intraoperative electrical stimulation (IES) for functional mapping. Pre- and post-operative neuro-psychological examinations were evaluated.Results Total resections were achieved in all cases as confirmed by the postoperative control MR. After transient language worsening, all patients recovered to normal 3-6 months later. Language functional MR scannings have shown language functional cortical and subcortical pathway reorganization (in the perilesion or contra-lateral hemisphere) after the operation. All patients returned to a normal socioprofessional life. Conclusions By utilizing the dynamic interaction between brain plasticity and fractionated resections, we can totally remove the tumor involving Broca's structure without inducing permanent postoperative deficits and even improve the quality of life.