The aggressive and invasive nature of brain tumors has hampered progress in the design and implementation of efficacious therapies. The recent success of targeted therapies in other tumor types makes this an attractiv...The aggressive and invasive nature of brain tumors has hampered progress in the design and implementation of efficacious therapies. The recent success of targeted therapies in other tumor types makes this an attractive area for research yet complicating matters is the ability of brain tumors to circumvent the targeted pathways to develop drug resistance. Effective therapies will likely need to target more than one signaling pathway or target multiple nodes within a given pathway. Key to identifying these targets is the elucidation of the driver and passenger molecules within these pathways. Animal models provide a useful tool with many advantages in the study of these pathways. These models provide a means to dissect the critical components of tumorigenesis, as well as serve as agents for preclinical testing. This review focuses on the use of the RCAS/tv-a mouse model of brain tumors and describes their unique ability to provide insight into the role of oncogene cooperation in tumor development and progression.展开更多
基金the National Institutes of Health(NIH),the Texas Higher Education Coordination Board,and the Goldhirsh Foundation for supporting our research using the RCAS mouse modelLynette Mooreis supported by an American Cancer Society Postdoctoral FellowshipKristen Holmes is supportedby the NIH Pharmacoinformatic Training Grantfellow ship
文摘The aggressive and invasive nature of brain tumors has hampered progress in the design and implementation of efficacious therapies. The recent success of targeted therapies in other tumor types makes this an attractive area for research yet complicating matters is the ability of brain tumors to circumvent the targeted pathways to develop drug resistance. Effective therapies will likely need to target more than one signaling pathway or target multiple nodes within a given pathway. Key to identifying these targets is the elucidation of the driver and passenger molecules within these pathways. Animal models provide a useful tool with many advantages in the study of these pathways. These models provide a means to dissect the critical components of tumorigenesis, as well as serve as agents for preclinical testing. This review focuses on the use of the RCAS/tv-a mouse model of brain tumors and describes their unique ability to provide insight into the role of oncogene cooperation in tumor development and progression.