期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy 被引量:15
1
作者 Xiuxiu Jiao Yuan Yu +6 位作者 Jianxia Meng Mei He Charles Jian Zhang Wenqian Geng Baoyue Ding Zhuo Wang Xueying Ding 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2019年第2期381-396,共16页
Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy(RT). However, there is no effective drug delivery system to effectively ov... Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy(RT). However, there is no effective drug delivery system to effectively overcome the blood–brain barrier(BBB). The aim of this study was to develop a gene delivery system by using the BBB and glioma dual-targeting and microenvironment-responsive micelles(ch-Kn(s-s)R8-An) to deliver Dbait into glioma for RT. Angiopep-2 can target the low-density lipoprotein receptor-related protein-1(LRP1) that is overexpressed on brain capillary endothelial cells(BCECs) and glioma cells. In particular, due to upregulated matrix metalloproteinase 2(MMP-2) in the tumor microenvironment, we utilized MMP-2-responsive peptides as the enzymatically degradable linkers to conjugate angiopep-2. The results showed that ch-Kn(s-s)R8-An micelles maintained a reasonable size(80–160 nm) with a moderate distribution and a decreased mean diameter from the cross-linking as well as exhibited low critical micelle concentration(CMC) with positive surface charge, ranging from 15 to40 mV. The ch-K5(s-s)R8-An/pEGFP showed high gene transfection efficiency in vitro, improved uptake in glioma cells and good biocompatibility in vitro and in vivo. In addition, the combination of ch-K5(s-s)R8-An/Dbait with RT significantly inhibited the growth of U251 cells in vitro. Thus, ch-K5(s-s)R8-An/Dbait may prove to be a promising gene delivery system to target glioma and enhance the efficacy of RT on U251 cells. 展开更多
关键词 glioma-targeting Cell-penetrating PEPTIDES Microenvironment-responsive micelles Gene delivery RADIOSENSITIZER
原文传递
Targeted delivery of a STING agonist to brain tumors using bioengineered protein nanoparticles for enhanced immunotherapy 被引量:5
2
作者 Bin Wang Maoping Tang +6 位作者 Ziwei Yuan Zhongyu Li Bin Hu Xin Bai Jinxian Chu Xiaoyang Xu Xue-Qing Zhang 《Bioactive Materials》 SCIE 2022年第10期232-248,共17页
Immunotherapy is emerging as a powerful tool for combating many human diseases.However,the application of this life-saving treatment in serious brain diseases,including glioma,is greatly restricted.The major obstacle ... Immunotherapy is emerging as a powerful tool for combating many human diseases.However,the application of this life-saving treatment in serious brain diseases,including glioma,is greatly restricted.The major obstacle is the lack of effective technologies for transporting therapeutic agents across the blood-brain barrier(BBB)and achieving targeted delivery to specific cells once across the BBB.Ferritin,an iron storage protein,traverses the BBB via receptor-mediated transcytosis by binding to transferrin receptor 1(TfR1)overexpressed on BBB endothelial cells.Here,we developed bioengineered ferritin nanoparticles as drug delivery carriers that enable the targeted delivery of a small-molecule immunomodulator to achieve enhanced immunotherapeutic efficacy in an orthotopic glioma-bearing mouse model.We fused different glioma-targeting moieties on self-assembled ferritin nanoparticles via genetic engineering,and RGE fusion protein nanoparticles(RGE-HFn NPs)were identified as the best candidate.Furthermore,RGE-HFn NPs encapsulating a stimulator of interferon genes(STING)agonist(SR717@RGE-HFn NPs)maintained stable self-assembled structure and targeting properties even after traversing the BBB.In the glioma-bearing mouse model,SR717@RGE-HFn NPs elicited a potent local innate immune response in the tumor microenvironment,resulting in significant tumor growth inhibition and prolonged survival.Overall,this biomimetic brain delivery platform offers new opportunities to overcome the BBB and provides a promising approach for brain drug delivery and immunotherapy in patients with glioma. 展开更多
关键词 Blood brain barrier Bioengineered protein nanoparticles Dual-targeting property STING agonist glioma-targeted immunotherapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部