Assessing spatiotemporal variation in global soil erosion is essential for identifying areas that require greater attention and management under the effects of anthropogenic activities and climate change.Soil erosion ...Assessing spatiotemporal variation in global soil erosion is essential for identifying areas that require greater attention and management under the effects of anthropogenic activities and climate change.Soil erosion can be modelled using the universal soil loss equation(USLE),which includes rainfall erosivity(R-factor),vegetation cover(C-factor),topography(LS-factor),soil erodibility(K-factor),and management practices(P-factor).However,global soil erosion modeling faces numerous challenges,including data acquisition,calculation processes,and parameter calibration under different climatic and topographic backgrounds.Thus,we presented an improved USLE-based model using highly distributed parameters.The R-,C-,and P-factors were modified by the climate zone,country,and topography.This distributed model was applied to estimate the intensity and variations in global soil erosion from 1992 to 2015.We validated the accuracy of this model by comparing simulations with measurements from 11,439 plot years of erosion data.The results showed that i)the average global erosion rate was 5.78 t ha^(-1)year^(-1),with an increase rate of 4.26×10^(-3)t ha^(-1)year^(-1);ii)areas with significantly increasing erosion accounted for 16%of the land with water erosion,whereas those with significantly decreasing erosion accounted for 7%;and iii)areas with severe erosion included the western Ghats,Abyssinian Plateau,Brazilian Plateau,south and east of the Himalayas,and western coast of South America.Intensified erosion occurred mainly on the Amazon Plain and the northern coast of the Mediterranean.This study provides an improved water erosion prediction model and accurate information for researchers and policymakers to identify the drivers underlying changes in water erosion in different regions.展开更多
In this study,short-term gully retreat was monitored from the active gullies selected in representative black soil area,using differential global positioning system(GPS).With the support of geographic information syst...In this study,short-term gully retreat was monitored from the active gullies selected in representative black soil area,using differential global positioning system(GPS).With the support of geographic information system(GIS),multi-temporal digital elevation models(DEM) were constructed from the data collected by GPS and used for further analysis.Based on the analysis of multi-temporal DEM,we discussed the erosion-deposition characteristics within gully and a developing model for black soil gully area of Northeast China was proposed.The results are:(1) The analysis of the monitored gully data in 2004 indicated that the retreat of gully head reached more than 10 m,gully area extended 170-400 m2,net gully eroded volume 220-320 m3,and gully erosion modulus 2200-4800 t?km?2?a?1.(2) Compared with the mature gully the initial gully grows rapidly,and its erosion parameters are relatively large.The erosion parameters have not only to do with flow energy,but also with the growth phase.(3) There are significant seasonal differences in gully erosion parameters.The extension of gully area and width dominates in winter and spring without marked net erosion while changes mainly occur in gully head and net erosion in rainy season.(4) It is remarkable for freeze-thaw erosion in the black soil area of NE China.The gully wall of SG2 extended 0.45 m under freeze-thaw effect in 2004,and the distance of gully head retreated maximally 6.4 m.(5) Due to freeze-thaw action and snowmelt,gully is primarily in the interior adjustment process in winter and early spring.There are much more depositions compared with that during rainy season,which can almost happen throughout the gully,while erosion mostly occurs near head,esp.for gullies having a relatively long history of development.On the other hand,the process of energy exchange with exterior dominates in rainy season.It is considered that this cyclic process is an important mechanism for gully growth in high latitude or/and high attitude regions.展开更多
The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT proce...The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes>28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR.展开更多
基金This work was funded by the National Natural Science Foundation of China(U2102209).
文摘Assessing spatiotemporal variation in global soil erosion is essential for identifying areas that require greater attention and management under the effects of anthropogenic activities and climate change.Soil erosion can be modelled using the universal soil loss equation(USLE),which includes rainfall erosivity(R-factor),vegetation cover(C-factor),topography(LS-factor),soil erodibility(K-factor),and management practices(P-factor).However,global soil erosion modeling faces numerous challenges,including data acquisition,calculation processes,and parameter calibration under different climatic and topographic backgrounds.Thus,we presented an improved USLE-based model using highly distributed parameters.The R-,C-,and P-factors were modified by the climate zone,country,and topography.This distributed model was applied to estimate the intensity and variations in global soil erosion from 1992 to 2015.We validated the accuracy of this model by comparing simulations with measurements from 11,439 plot years of erosion data.The results showed that i)the average global erosion rate was 5.78 t ha^(-1)year^(-1),with an increase rate of 4.26×10^(-3)t ha^(-1)year^(-1);ii)areas with significantly increasing erosion accounted for 16%of the land with water erosion,whereas those with significantly decreasing erosion accounted for 7%;and iii)areas with severe erosion included the western Ghats,Abyssinian Plateau,Brazilian Plateau,south and east of the Himalayas,and western coast of South America.Intensified erosion occurred mainly on the Amazon Plain and the northern coast of the Mediterranean.This study provides an improved water erosion prediction model and accurate information for researchers and policymakers to identify the drivers underlying changes in water erosion in different regions.
基金Key Project for National Natural Science Foundation of China,No.40235056The Ph.D. Programs Foundation of Ministry of Education of China, No.20030027015+3 种基金China Postdoctoral Science Foundation,No.20070410482Doctoral Foundation of University of Jinan,No.B0620National Natural Science Foundation of China,No.40672158Key Subject Foundation Supported by Shandong Province
文摘In this study,short-term gully retreat was monitored from the active gullies selected in representative black soil area,using differential global positioning system(GPS).With the support of geographic information system(GIS),multi-temporal digital elevation models(DEM) were constructed from the data collected by GPS and used for further analysis.Based on the analysis of multi-temporal DEM,we discussed the erosion-deposition characteristics within gully and a developing model for black soil gully area of Northeast China was proposed.The results are:(1) The analysis of the monitored gully data in 2004 indicated that the retreat of gully head reached more than 10 m,gully area extended 170-400 m2,net gully eroded volume 220-320 m3,and gully erosion modulus 2200-4800 t?km?2?a?1.(2) Compared with the mature gully the initial gully grows rapidly,and its erosion parameters are relatively large.The erosion parameters have not only to do with flow energy,but also with the growth phase.(3) There are significant seasonal differences in gully erosion parameters.The extension of gully area and width dominates in winter and spring without marked net erosion while changes mainly occur in gully head and net erosion in rainy season.(4) It is remarkable for freeze-thaw erosion in the black soil area of NE China.The gully wall of SG2 extended 0.45 m under freeze-thaw effect in 2004,and the distance of gully head retreated maximally 6.4 m.(5) Due to freeze-thaw action and snowmelt,gully is primarily in the interior adjustment process in winter and early spring.There are much more depositions compared with that during rainy season,which can almost happen throughout the gully,while erosion mostly occurs near head,esp.for gullies having a relatively long history of development.On the other hand,the process of energy exchange with exterior dominates in rainy season.It is considered that this cyclic process is an important mechanism for gully growth in high latitude or/and high attitude regions.
基金funded by the Open fund of Key Laboratory for Digital Land and Resources of Jiangxi Province, East China University of Technology (Grant No. DLLJ201709)Open fund of Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoinformation (Grant No. 2016NGCM02)+2 种基金Open fund of Key Laboratory of Precise Engineering and Industry Surveying (Grant No. PF2015-17)National Administration of Surveying, Mapping and Geoinformation, National Natural Science Foundation of China (Grant Nos. 41501416, 40775019)the Natural Science Foundation of Shandong Province (Grant Nos. ZR2014DL001, ZR2015DL005)
文摘The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes>28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR.