A novel subspace projection anti-jamming algorithm based on spatial blind search is proposed,which uses multiple single-constrained subspace projection parallel filters.If the direction of arrival(DOA)of a satellite s...A novel subspace projection anti-jamming algorithm based on spatial blind search is proposed,which uses multiple single-constrained subspace projection parallel filters.If the direction of arrival(DOA)of a satellite signal is unknown,the traditional subspace projection anti-jamming algorithm cannot form the correct beam pointing.To overcome the problem of the traditional subspace projection algorithm,multiple single-constrained subspace projection parallel filters are used.Every single-constrained anti-jamming subspace projection algorithm obtains the optimal weight vector by searching the DOA of the satellite signal and uses the output of cross correlation as a decision criterion.Test results show that the algorithm can suppress the jamming effectively,and generate high gain toward the desired signal.The research provides a new idea for the engineering implementation of a multi-beam anti-jamming algorithm based on subspace projection.展开更多
The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation ...The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.展开更多
A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two mo...A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two modified L-probes with quadrature phase difference. It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth, because of the orthogonal L-probes with 90° phase difference. The measured peak gain of the antenna is 3.9 dBic. It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes, achieving a cross-polarization level of larger than 25 dB. Noticeably, the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas. It can be used in hand-held navigation devices of multiple GNSS such as COMPASS, Galileo, GPS and GLONASS.展开更多
The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applica...The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.展开更多
Celestial navigation system is an important autonomous navigation system widely used for deep space exploration missions, in which extended Kalman filter and the measurement of angle between celestial bodies are used ...Celestial navigation system is an important autonomous navigation system widely used for deep space exploration missions, in which extended Kalman filter and the measurement of angle between celestial bodies are used to estimate the position and velocity of explorer. In a conventional cartesian coordinate, this navigation system can not be used to achieve accurate determination of position for linearization errors of nonlinear spacecraft motion equation. A new autonomous celestial navigation method has been proposed for lunar satellite using classical orbital parameters. The error of linearizafion is reduced because orbit parameters change much more slowly than the position and velocity used in the cartesian coordinate. Simulations were made with both the cartesiane system and a system based on classical orbital parameters using extended Kalman filter under the same conditions for comparison. The results of comparison demonstrated high precision position determination of lunar satellite using this new method.展开更多
Autonomous navigation of navigation satellite is discussed. The method of auto-orbit determination using the erosslink range and orientation parameters constraining is put forward. On the basis of the analysis of its ...Autonomous navigation of navigation satellite is discussed. The method of auto-orbit determination using the erosslink range and orientation parameters constraining is put forward. On the basis of the analysis of its feasibility, some useful conclusions are given.展开更多
For global navigation satellite system(GNSS)in the application of high earth orbit(HEO)determination,there are problems such as small number of visible satellites and weak signal magnitude.The transmitting and receivi...For global navigation satellite system(GNSS)in the application of high earth orbit(HEO)determination,there are problems such as small number of visible satellites and weak signal magnitude.The transmitting and receiving errors of GNSS signal in the environment of HEO space are analyzed,and related compensating scheme is also proposed.Acquisition of GNSS signal is implemented by using weak signal acquisition technology based on Duffing.Precise tracking of weak GNSS signal is also realized by adopting dynamic detection and compensation technology based on Duffing chaotic oscillator.Simulation results show that,certain acquisition sensitivity and navigation precision can be reached,and the acquisition and tracking of weak GNSS signal can be realized by using the proposed technology,which provides good technology support for autonomous navigation of HEO and large elliptical spacecrafts.展开更多
This paper uses two navigation schemes to prove the potential of a novel autonomous orbit determination with stellar horizon atmospheric refraction measurements. Scheme one needs a single processor and uses an extende...This paper uses two navigation schemes to prove the potential of a novel autonomous orbit determination with stellar horizon atmospheric refraction measurements. Scheme one needs a single processor and uses an extended Kalman filter. The second scheme needs two parallel processors. One processor uses a hatched leastsquare initial state estimator and a high-precision dynamic state propagator. The other processor uses a real-time orbit predictor. Simulations have been executed respectively for three types (low/medial/high) of satellite orbits on which various numbers of stars are observed. The results show both schemes can autonomously determine the orbits with a considerable performance. The second scheme in general performs a little better than the first scheme.展开更多
基金Supported by the Natural Science Foundation of Hebei Province(F2011205023)the National Natural Science Foundation of China(61175059)。
文摘A novel subspace projection anti-jamming algorithm based on spatial blind search is proposed,which uses multiple single-constrained subspace projection parallel filters.If the direction of arrival(DOA)of a satellite signal is unknown,the traditional subspace projection anti-jamming algorithm cannot form the correct beam pointing.To overcome the problem of the traditional subspace projection algorithm,multiple single-constrained subspace projection parallel filters are used.Every single-constrained anti-jamming subspace projection algorithm obtains the optimal weight vector by searching the DOA of the satellite signal and uses the output of cross correlation as a decision criterion.Test results show that the algorithm can suppress the jamming effectively,and generate high gain toward the desired signal.The research provides a new idea for the engineering implementation of a multi-beam anti-jamming algorithm based on subspace projection.
基金supported by the National Natural Science Foundation of China(41804035,41374027)。
文摘The spoofing capability of Global Navigation Satellite System(GNSS)represents an important confrontational capability for navigation security,and the success of planned missions may depend on the effective evaluation of spoofing capability.However,current evaluation systems face challenges arising from the irrationality of previous weighting methods,inapplicability of the conventional multi-attribute decision-making method and uncertainty existing in evaluation.To solve these difficulties,considering the validity of the obtained results,an evaluation method based on the game aggregated weight model and a joint approach involving the grey relational analysis and technique for order preference by similarity to an ideal solution(GRA-TOPSIS)are firstly proposed to determine the optimal scheme.Static and dynamic evaluation results under different schemes are then obtained via a fuzzy comprehensive assessment and an improved dynamic game method,to prioritize the deceptive efficacy of the equipment accurately and make pointed improvement for its core performance.The use of judging indicators,including Spearman rank correlation coefficient and so on,combined with obtained evaluation results,demonstrates the superiority of the proposed method and the optimal scheme by the horizontal comparison of different methods and vertical comparison of evaluation results.Finally,the results of field measurements and simulation tests show that the proposed method can better overcome the difficulties of existing methods and realize the effective evaluation.
基金supported by the NSFC-Guangdong (Grant No.U1035002) and NSFC-NSAF (Grant No.10976010)National Key Project of Science and Technology of China (Grant No. 2009ZX03006-003)the Technology Key Projects of Guangdong Province of China (Grant Nos.2009A080207006 and 2009A080207002)
文摘A compact and broadband circularly polarized (CP) annular ring antenna with wide beam-width is proposed for multiple global navigation satellite systems (GNSS) in the L1 band. The annular ring is excited by two modified L-probes with quadrature phase difference. It has a 36.3% 10-dB return loss bandwidth and a 13% 3-dB axial ratio bandwidth, because of the orthogonal L-probes with 90° phase difference. The measured peak gain of the antenna is 3.9 dBic. It can detect the satellites at lower elevation as its half power beam-width (HPBW) is 113° in both the x-z and y-z planes, achieving a cross-polarization level of larger than 25 dB. Noticeably, the antenna achieves 89% size reduction compared with the conventional half wavelength patch antennas. It can be used in hand-held navigation devices of multiple GNSS such as COMPASS, Galileo, GPS and GLONASS.
文摘The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60174031)China National Space Administration
文摘Celestial navigation system is an important autonomous navigation system widely used for deep space exploration missions, in which extended Kalman filter and the measurement of angle between celestial bodies are used to estimate the position and velocity of explorer. In a conventional cartesian coordinate, this navigation system can not be used to achieve accurate determination of position for linearization errors of nonlinear spacecraft motion equation. A new autonomous celestial navigation method has been proposed for lunar satellite using classical orbital parameters. The error of linearizafion is reduced because orbit parameters change much more slowly than the position and velocity used in the cartesian coordinate. Simulations were made with both the cartesiane system and a system based on classical orbital parameters using extended Kalman filter under the same conditions for comparison. The results of comparison demonstrated high precision position determination of lunar satellite using this new method.
文摘Autonomous navigation of navigation satellite is discussed. The method of auto-orbit determination using the erosslink range and orientation parameters constraining is put forward. On the basis of the analysis of its feasibility, some useful conclusions are given.
基金the National Key Research and Development Program of China(No.2016YFB0501000)the Major Program of National Natural Science Foundation of China(No.61690214)the Project of D020214.
文摘For global navigation satellite system(GNSS)in the application of high earth orbit(HEO)determination,there are problems such as small number of visible satellites and weak signal magnitude.The transmitting and receiving errors of GNSS signal in the environment of HEO space are analyzed,and related compensating scheme is also proposed.Acquisition of GNSS signal is implemented by using weak signal acquisition technology based on Duffing.Precise tracking of weak GNSS signal is also realized by adopting dynamic detection and compensation technology based on Duffing chaotic oscillator.Simulation results show that,certain acquisition sensitivity and navigation precision can be reached,and the acquisition and tracking of weak GNSS signal can be realized by using the proposed technology,which provides good technology support for autonomous navigation of HEO and large elliptical spacecrafts.
文摘This paper uses two navigation schemes to prove the potential of a novel autonomous orbit determination with stellar horizon atmospheric refraction measurements. Scheme one needs a single processor and uses an extended Kalman filter. The second scheme needs two parallel processors. One processor uses a hatched leastsquare initial state estimator and a high-precision dynamic state propagator. The other processor uses a real-time orbit predictor. Simulations have been executed respectively for three types (low/medial/high) of satellite orbits on which various numbers of stars are observed. The results show both schemes can autonomously determine the orbits with a considerable performance. The second scheme in general performs a little better than the first scheme.