Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie...Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.展开更多
Accurate,reliable,and high spatiotemporal resolution precipitation products are essential for precipitation research,hydrological simulation,disaster warning,and many other applications over the Tibetan Plateau(TP).Th...Accurate,reliable,and high spatiotemporal resolution precipitation products are essential for precipitation research,hydrological simulation,disaster warning,and many other applications over the Tibetan Plateau(TP).The Global Precipitation Measurement(GPM) data are widely recognized as the most reliable satellite precipitation product for the TP.The China Meteorological Administration(CMA) Land Data Assimilation System(CLDAS) precipitation fusion dataset(CLDAS-Prcp),hereafter referred to as CLDAS,is a high-resolution,self-developed precipitation product in China with regional characteristics.Focusing on the TP,this study provides a long-term evaluation of CLDAS and GPM from various aspects,including characteristics on different timescales,diurnal variation,and elevation impacts,based on hourly rain gauge data in summer from 2005 to 2021.The results show that CLDAS and GPM are highly effective alternatives to the rain gauge records over the TP.They both perform well for precipitation amount and frequency on multiple timescales.CLDAS tends to overestimate precipitation amount and underestimate precipitation frequency over the TP.However,GPM tends to overestimate both precipitation amount and frequency.The difference between them mainly lies in the trace precipitation.CLDAS and GPM effectively capture rainfall events,but their performance decreases significantly as intensity increases.They both show better accuracy in diurnal variation of precipitation amount than frequency,and their performance tends to be superior during nighttime compared to the daytime.Nevertheless,there are some differences of the two against rain gauge observations in diurnal variation,especially in the phase of the diurnal variation.The performance of CLDAS and GPM varies at different elevations.They both have the best performance over 3000–3500 m.The elevation dependence of CLDAS is relatively minor,while GPM shows a stronger elevation dependence in terms of precipitation amount.GPM tends to overestimate the precipitation amount at lower elevations and underestimate it at higher elevations.CLDAS and GPM exhibit unique strengths and weaknesses;hence,the choice should be made according to the specific situation of application.展开更多
Continuous high spatial-resolution 10-day precipitation data are essential for crop growth services and phenological research.In this study,we first use the bidimensional empirical mode decomposition(BEMD)algorithm to...Continuous high spatial-resolution 10-day precipitation data are essential for crop growth services and phenological research.In this study,we first use the bidimensional empirical mode decomposition(BEMD)algorithm to decompose the digital elevation model(DEM)data and obtain high-frequency(OR3),intermediate-frequency(OR5),and low-frequency(OR8)margin terrains.Then,we propose a refined precipitation spatialization model,which uses ground-based meteorological observation data,integrated multi-satellite retrievals for global precipitation measurement(GPM IMERG)satellite precipitation products,DEM data,terrain decomposition data,prevailing precipitation direction(PPD)data,and other multisource data,to construct China's high-resolution 10-day precipitation data from2001 to 2018.The decomposition results show mountainous terrain from fine to coarse scales;and the influences of altitude,slope,and aspect on precipitation are better represented in the model after topography is decomposed.Moreover,terrain decomposition data can be added to the model simulation to improve the quality of the simulation product;the simulation quality of the model in summer is better than that in spring and autumn,and is relatively poor in winter;and OR5 and OR8 can be improved in the simulation,with better OR5 and OR8 dynamically selected.In addition,preprocessing the data before precipitation spatialization is particularly important.For example,adding 0.01to the 0 value of precipitation,multiplying the small value of precipitation less than 1 by 10,and performing the normal distributions transform(e.g.,Yeo–Johnson)on the data can improve the simulation quality.展开更多
Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for ...Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for GPM(IMERG) and its predecessor, the Tropical Rainfall Measuring Mission(TRMM) Multi-satellite Precipitation Analysis(TMPA), are statistically evaluated over the Tibetan Plateau(TP), with an emphasis on the diurnal variation.The results indicate that:(1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m;(2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and(3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion,GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.展开更多
基金supported by the National Key Research and Development Program of China(2023YFC3206300)the National Natural Science Foundation of China(42477529,42371145,42261026)+2 种基金the China-Pakistan Joint Program of the Chinese Academy of Sciences(046GJHZ2023069MI)the Gansu Provincial Science and Technology Program(22ZD6FA005)the National Cryosphere Desert Data Center(E01Z790201).
文摘Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.
基金Supported by the National Natural Science Foundation of China (42030611)National Key Research and Development Program of China (2023YFC3007502)+1 种基金Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0105)Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX23_1301)。
文摘Accurate,reliable,and high spatiotemporal resolution precipitation products are essential for precipitation research,hydrological simulation,disaster warning,and many other applications over the Tibetan Plateau(TP).The Global Precipitation Measurement(GPM) data are widely recognized as the most reliable satellite precipitation product for the TP.The China Meteorological Administration(CMA) Land Data Assimilation System(CLDAS) precipitation fusion dataset(CLDAS-Prcp),hereafter referred to as CLDAS,is a high-resolution,self-developed precipitation product in China with regional characteristics.Focusing on the TP,this study provides a long-term evaluation of CLDAS and GPM from various aspects,including characteristics on different timescales,diurnal variation,and elevation impacts,based on hourly rain gauge data in summer from 2005 to 2021.The results show that CLDAS and GPM are highly effective alternatives to the rain gauge records over the TP.They both perform well for precipitation amount and frequency on multiple timescales.CLDAS tends to overestimate precipitation amount and underestimate precipitation frequency over the TP.However,GPM tends to overestimate both precipitation amount and frequency.The difference between them mainly lies in the trace precipitation.CLDAS and GPM effectively capture rainfall events,but their performance decreases significantly as intensity increases.They both show better accuracy in diurnal variation of precipitation amount than frequency,and their performance tends to be superior during nighttime compared to the daytime.Nevertheless,there are some differences of the two against rain gauge observations in diurnal variation,especially in the phase of the diurnal variation.The performance of CLDAS and GPM varies at different elevations.They both have the best performance over 3000–3500 m.The elevation dependence of CLDAS is relatively minor,while GPM shows a stronger elevation dependence in terms of precipitation amount.GPM tends to overestimate the precipitation amount at lower elevations and underestimate it at higher elevations.CLDAS and GPM exhibit unique strengths and weaknesses;hence,the choice should be made according to the specific situation of application.
基金Supported by the National Key Research and Development Program of China (2019YFB2102003)National Natural Science Foundation of China (41805049 and 42075118)Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX21_0979)。
文摘Continuous high spatial-resolution 10-day precipitation data are essential for crop growth services and phenological research.In this study,we first use the bidimensional empirical mode decomposition(BEMD)algorithm to decompose the digital elevation model(DEM)data and obtain high-frequency(OR3),intermediate-frequency(OR5),and low-frequency(OR8)margin terrains.Then,we propose a refined precipitation spatialization model,which uses ground-based meteorological observation data,integrated multi-satellite retrievals for global precipitation measurement(GPM IMERG)satellite precipitation products,DEM data,terrain decomposition data,prevailing precipitation direction(PPD)data,and other multisource data,to construct China's high-resolution 10-day precipitation data from2001 to 2018.The decomposition results show mountainous terrain from fine to coarse scales;and the influences of altitude,slope,and aspect on precipitation are better represented in the model after topography is decomposed.Moreover,terrain decomposition data can be added to the model simulation to improve the quality of the simulation product;the simulation quality of the model in summer is better than that in spring and autumn,and is relatively poor in winter;and OR5 and OR8 can be improved in the simulation,with better OR5 and OR8 dynamically selected.In addition,preprocessing the data before precipitation spatialization is particularly important.For example,adding 0.01to the 0 value of precipitation,multiplying the small value of precipitation less than 1 by 10,and performing the normal distributions transform(e.g.,Yeo–Johnson)on the data can improve the simulation quality.
基金Supported by the National Natural Science Foundation of China(91437221 and 41775097)Science and Technology Planning Project of Guangdong Province(2017B020218003)Natural Science Foundation of Guangdong Province(2016A030313140)
文摘Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for GPM(IMERG) and its predecessor, the Tropical Rainfall Measuring Mission(TRMM) Multi-satellite Precipitation Analysis(TMPA), are statistically evaluated over the Tibetan Plateau(TP), with an emphasis on the diurnal variation.The results indicate that:(1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m;(2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and(3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion,GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.