With development of modern geoscience, particularly development of environmental sciences, the contemporary soil science is undergoing great changes in both research contents and scope. Soil is not onlya certain subst...With development of modern geoscience, particularly development of environmental sciences, the contemporary soil science is undergoing great changes in both research contents and scope. Soil is not onlya certain substance or a certain independent natural historical body but also a spheric layer with peculiarstructure and functions in the earth system. From the viewpoint of the geo-biosphere system of earth, soilscience does deal not only with the soil substances per se but also more importantly with the relationshipsamong soil, the other spheres and the human survival environment in view of the "pedosphere". This is thenew orientation of soil science today and will affect profoundly the studies on the human survival environmentand global changes. To throw more light on this subject, the present paper intends to address the conceptionof pedosphere and its role in global changes. Also addressed are series of environmental issues in China andtheir relations to the global changes. Moreover, research orientation and priorities are indicated, includingexploitation and protection of the soil resources, soil fertility and sustainable agricultural development, construction of the ecological environment, and the material cycling in pedosphere and its relation to globalchanges.展开更多
High altitude and high latitude regions on Earth are experiencing rapid changes in climate, with impacts on polar organisms and the environment. The persistent cold and sometimes inhospitable conditions create unique ...High altitude and high latitude regions on Earth are experiencing rapid changes in climate, with impacts on polar organisms and the environment. The persistent cold and sometimes inhospitable conditions create unique ecosystems and habitats for polar organisms.展开更多
Dear Colleagues, We would like to invite you to submit manuscripts to a special issue of the journal Advances in Polar Science (APS) on "Response of Polar Organisms and Natural Environment to Global Changes".
A review of the year’s international political and security situation In 2010, despite the generally stable international environment, significant changes occurred seen in international relations. This is due
The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studi...The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studies show an evident change in temperature and precipitation over China will occur under conditions of the global warming. Possible scenarios of the future climates are given here for China on the basis of synthesizing model simulations and palaeoclimatic data. Most parts of China will experience an increase in temperature, but the warming may be more remarkable in winter in h1e northern half of the country. Increase in precipitation will be seen in nearly every parts of the eastern China, and it will be larger in North and Northeast China. Impacts of the climate changes on the national tourism are assessed. Regions suitable for tourisin development in terms of climate comfortable index will shift northward. Some scenic spots and toruism facilities will be damaged due to sea level rise and increased rainfall. Some regions will benefit from the dimate change, but the tourism industry as a whole will be negatively affected.展开更多
Two ingressions occurred in the last glacial interstadial (50,00-25,000 a BP) and Holocene optimum (7,500-5,000 a BP) periods in Antercticregion. The grea expansion of Antarcic Ice Sheet appeared at last glacialmaxim...Two ingressions occurred in the last glacial interstadial (50,00-25,000 a BP) and Holocene optimum (7,500-5,000 a BP) periods in Antercticregion. The grea expansion of Antarcic Ice Sheet appeared at last glacialmaximum (18,000 a BP) when Antarctic sea level was 100- 150 m lower thanthat at presat. Three times of glacial advances and rotreas occurred on thefront of Antarctic Ice Shed since 3,000 a BP. All these phenomena werecoordinated with global changes. In the past decades, records from Antercticice-free areas and ice cores testified that mvironmedl and climatic changesin Antarctic region have been coordinated with global changes since latePlelstocene. In the past decades, Antarctic inland was a little warming up andthe fron of the ice shed was slowly melting and ratreating due to the increaseof CO2 content in the atmosphere. The greenhouse effect will cause AntercticIce Sheet (especially on the ice shelves) to be partly melting away, but can notdestroy it. In this case the amplitude of sea level rise caused by the melting ofAntarctic ice will be less than 0.2 m within the coming five decades.展开更多
Soil-emitted N_(2)O contributes to two-thirds of global N_(2)O emissions,and is sensitive to global change.We used DayCent model to simulate major plant-soil N cycling processes under different global change scenarios...Soil-emitted N_(2)O contributes to two-thirds of global N_(2)O emissions,and is sensitive to global change.We used DayCent model to simulate major plant-soil N cycling processes under different global change scenarios in a typical temperate mixed forest in north-eastern China.Simulated scenarios included warming(T),elevated atmospheric CO_(2) concentration([CO_(2)])(C),increased N deposition(N)and precipitation(P),and their full factorial combinations.The responses of plant-soil nitrogen cycling processes including net N mineralization,plant N uptake,gross nitrification,denitrification and soil N_(2)O emission were examined.Concurrent increase of elevated[CO_(2)]and N deposition displayed most strong interactive effects on most fluxes.Using the results from experimental studies for evaluation,simulation uncertainty was highest under elevated[CO_(2)]and increased precipitation among the four global change factors.N deposition had a fundamental impact on soil N cycle and N_(2)O emission in our studied forest.Despite forest soil acting as a N sink for added N,scenarios which included increased N deposition showed higher cumulative soil N_(2)O emissions(summed up from 2001 to 2100).In particular,the scenario which included T,P,and N had the largest cumulative soil N_(2)O emission,which was a 24.4% increase over that under ambient conditions.Our study points to the importance of the interactive effects of global change factors on plant-soil N cycling and the necessity of multi-factor manipulation experiments.展开更多
<p align="justify"> <span style="font-family:Verdana;">Physical concepts based on the Clausius-Clapeyron relation and on the thermodynamics and aerosol characteristics associated with u...<p align="justify"> <span style="font-family:Verdana;">Physical concepts based on the Clausius-Clapeyron relation and on the thermodynamics and aerosol characteristics associated with updrafts, global climate models assuming different parametrizations and lightning-related output variables, and lightning-related data (thunderstorm days) are being used to infer the lightning incidence in a warmer planet, motivated by the global warming observed. In all cases, there are many gaps to be overcome making the lightning response to the global temperature increase still unpredicted. Values from almost 0% (no increase) to 100% have been estimated, being 10% the most common value. While the physical concepts address only part of the problem and the global climate models need to make many simple assumptions, lightning-relate data have strong time and space limitations. In this context, any new evidence should be considered as an important contribution to better understand how will be the lightning incidence in the future. In this article</span></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> we described new results about the occurrence of thunderstorms from 1850 to 2010 (a period of 160 years) in the city of Rio de Janeiro, in the Southeast of Brazil. During this period thunderstorm days were recorded in the same location, making this time series one of the longest series of this type available worldwide. The data support an increase of 21% in the mean annual thunderstorm days during the period, while surface temperature i</span><span><span style="font-family:Verdana;">ncreased by 0.6</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C during the period. Considering that the mean annua</span></span><span style="font-family:Verdana;">l number of thunderstorm in the beginning of this period was 29, we found an increase of one thunderstorm day per 0.1</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C of increase in the surface temperature. Assuming that the number of lightning flashes per thunderstorm remains approximately constant during the period</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> this number corresponds to an increase in the lightning flash rate of approximately 35% per </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">C of increase of temperature. In addition, considering that the increase of the global temperature during the period was almost the same that observed in Rio de Janeiro</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we can conclude that this increase in the lightning flash rate is due to the global warming with no effect of urban activity. Finally, we found that monthly thunderstorm days and monthly mean surface temperature show a linear correlation with a coefficient of 0.9 along the period.</span></span></span> </p>展开更多
The 21st century has seen an acceleration of global change,including climate change,elevated carbon dioxide,nitrogen deposition,and land-use intensification,which poses a significant threat to ecosystem functioning.Ne...The 21st century has seen an acceleration of global change,including climate change,elevated carbon dioxide,nitrogen deposition,and land-use intensification,which poses a significant threat to ecosystem functioning.Nev-ertheless,studies on the relationship between biodiversity and ecosystem functioning(BEF)have consistently demonstrated that biodiversity enhances ecosystem functioning and its stability,even in variable environmental conditions.These findings potentially indicate the critical role of biodiversity in promoting sustainable provi-sioning of ecosystem functioning under global change.Our paper provides a comprehensive review of current BEF research and the response of BEF to multiple global change factors.We demonstrate that(1)assessing the effects of biodiversity on ecosystem functioning requires consideration of multiple dimensions of diversity,such as diversity across multiple trophic levels(plants,animals,and microbes),multiple facets(taxonomy,functional traits,and phylogeny),and multiple spatial scales(local,regional,and landscape scales).(2)The interaction of multiple global change factors may lead to a greater reduction in biodiversity and ecosystem functioning than a single global change factor.(3)Multidimensional biodiversity regulates the response of ecosystem functioning to global change factors,indicating that high levels of multidimensional biodiversity can mitigate the negative impacts of global change on ecosystem functioning.Overall,we emphasize that recognizing the importance of multidimensional biodiversity is critical for sustaining ecosystem functioning.Therefore,prioritizing conserva-tion efforts to maintain and enhance all dimensions of biodiversity is essential to address the challenges of future global change.展开更多
This article explains ongoing changes in global climate and their effect on the resurgence of vector and pathogen populations in various parts of the world.Today,major prevailing changes are the elevation of global te...This article explains ongoing changes in global climate and their effect on the resurgence of vector and pathogen populations in various parts of the world.Today,major prevailing changes are the elevation of global temperature and accidental torrent rains,floods,droughts,and loss of productivity and food commodities.Due to the increase in water surface area and the longer presence of flood water,the breeding of insect vectors becomes very high;it is responsible for the emergence and re-emergence of so many communicable diseases.Due to the development of resistance to chemicals in insect pests,and pathogens and lack of control measures,communicable zoonotic diseases are remerging with high infectivity and mortality.This condition is becoming more alarming as the climate is favoring pathogen-host interactions and vector populations.Rapid changes seen in meteorology are promoting an unmanageable array of vector-borne infectious diseases,such as malaria,Japanese encephalitis,filarial,dengue,and leishmaniasis.Similarly,due to unhygienic conditions,poor sanitation,and infected ground and surface water outbreak of enteric infections such as cholera,vibriosis,and rotavirus is seen on the rise.In addition,parasitic infection ascariasis,fasciolosis,schistosomiasis,and dysentery cases are increasing.Today climate change is a major issue and challenge that needs timely quick solutions.Climate change is imposing non-adaptive forced human migration territorial conflicts,decreasing ecosystem productivity,disease outbreaks,and impelling unequal resource utilization.Rapid climate changes,parasites,pathogens,and vector populations are on the rise,which is making great threats to global health and the environment.This article highlighted the necessity to develop new strategies and control measures to cut down rising vector and pathogen populations in endemic areas.For finding quick solutions educational awareness,technology up-gradation,new vaccines,and safety measures have to be adopted to break the cycle of dreadful communicable diseases shortly.展开更多
An aerial photographic coverage acquired on two consecutive days in October 2021 with a ground resolution of 20 cm and a spectral resolution of 4 bands (red, green, blue and near infrared), allowed to distinguish most...An aerial photographic coverage acquired on two consecutive days in October 2021 with a ground resolution of 20 cm and a spectral resolution of 4 bands (red, green, blue and near infrared), allowed to distinguish most of the classes of interest present in the intertidal zone of the Sado estuary. We explored the possibilities of thematic classification in the powerful and complex software ArcGIS Pro;we presented the methodology used in a detailed way that allows others with minimal knowledge of GIS to reproduce the classification process without having to decipher the specifics of the software. The classification implemented used ground truth from four classes related to the macro-occupations of the area. In a first phase we explore the standard algorithms with object-based capabilities, like K-Nearest Neighbor, Random Trees Forest and Support Vector Machine, and in a second phase we proceed to test three deep learning classifiers that provide semantic segmentation: a U-Net configuration, a Pyramid Scene Parsing Network and DeepLabV3. The resulting classifications were quantitatively evaluated with a set of 500 control points in a test area of 37,500 × 12,500 pixels, using confusion matrices and resorting to Cohen’s kappa statistic and the concept of global accuracy, achieving a Kappa in the range [0.72, 0.81] and a global accuracy between 88.9% and 92.9%;the option U-Net had the most interesting results. This work establishes a methodology to provide a baseline for assessing future changes in the distribution of Sado estuarine habitats, which can be replicated in other wetland ecosystems for conservation and management purposes.展开更多
One-year-resolved and annually-counted stalagmite multi-proxies (j180, ~13C, and layer width) from Daoguan Cave, Guizhou Province revealed detailed variability regarding the Asian Summer Monsoon (ASM) and local hu...One-year-resolved and annually-counted stalagmite multi-proxies (j180, ~13C, and layer width) from Daoguan Cave, Guizhou Province revealed detailed variability regarding the Asian Summer Monsoon (ASM) and local humidity across Bond events (BE) in the PreboreaL During BEs 8 and 7, 1.5%o enrichments in jlSo values were generally consistent with high- to low-latitude climate changes. In detail, the decadal-scale minor j180 oscillations in BE8 were broadly less than the mean value, in contrast to the significant changes in local soil moisture derived from the j13C values and layer records. In the mid-BE7, jlSo variability was generally above the average level, and higher- amplitude variations were observed in the three proxy indicators. Wavelet analysis on the total jlSo time series and across the specific time windows of BEs 8 and 7 identified periodicities of about 130, 60, and 20-a, respectively. Exceptionally strong in BE7, the 60-a cycle, pervasively observed in instrumental studies, became prominent starting at 11.4 kaBP. Thus, glacial background conditions are important for suppressing the ASM intensity in BE8, while during BE7, tropical hydrological circulations were potentially actively involved. Consequently, climate internal oscillations, analogous to modern conditions, might have occurred in the distant past once the link between the tropical ocean and atmosphere was established as occurs today.展开更多
Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north...Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north western belts of Pakistan are highly sensitive to deforestation and other LULC changes, which have profound impacts on various sectors of bio-physical and socio-economic systems. Assessment of LULC changes has high significance for protection, conservation and monitoring mountainous environment. The present study is an attempt to assess the landscape changes with particular reference to forest cover depletion in Kurram Agency located in the north western mountain belt of Pakistan. For detailed comparative analysis the study area has been divided into three sections, which coincide with the present administrative divisions of the Agency, i.e., Upper,Lower and Central Kurram. Temporal span of this study covers four decades. In this study, land use map of 1970 and land sat satellite imageries of 1987, 2000 and 2014 were used as spatial data sets. The images were processed and classified into six LULC classes through geospatial packages and change detection maps were prepared for each division and time period.Findings of the study reveal two trends in the four major LULC categories. Forest and rangeland have shrunk, on average, by 15% and 7.5% respectively while, bare soil and rocks outcrops have expanded by 89% and agriculture land by 7.2% in Kurram agency.The water bodies and snow cover have minor fluctuation in its land area. Major causes of shrinking greenery is attributed to high influx of Afghan refugees and high energy demand of growing population. However, with outflow of the refugees from Kurram agency the general trend in forest cover has reverted and deforestation rate has slowed down.展开更多
Alien plant invasion success can be inhibited by two key biotic factors:native herbivores and plant diversity.However,few studies have experimentally tested whether these factors interact to synergistically resist inv...Alien plant invasion success can be inhibited by two key biotic factors:native herbivores and plant diversity.However,few studies have experimentally tested whether these factors interact to synergistically resist invasion success,especially factoring in changing global environments(e.g.nutrient enrichment).Here we tested how the synergy between native herbivores and plant diversity affects alien plant invasion success in various nutrient conditions.For this purpose,we exposed alien plant species in potmesocosms to different levels of native plant diversity(4 vs.8 species),native generalist herbivores,and high and low soil nutrient levels.We found that generalist herbivores preferred alien plants to native plants,inhibiting invasion success in a native community.This inhibition was amplified by highly diverse native communities.Further,the amplified effect between herbivory and native plant diversity was independent of nutrient conditions.Our results suggest that a higher diversity of native communities can strengthen the resistance of native generalist herbivores to alien plant invasions by enhancing herbivory tolerance.The synergistic effect remains in force in nutrient-enriched habitats that are always invaded by alien plant species.Our results shed light on the effective control of plant invasions using multi-trophic means,even in the face of future global changes.展开更多
To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequ...To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequences require sustainable agricultural land use practices as supplementary to advanced biotechnology and agronomy. This review paper, from a land system perspective, systematically proposed and analyzed three interactive strategies that could possibly raise future food production under global change. By reviewing the current literatures, we suggest that cropland expansion is less possible amid iferce land competition, and it is likely to do less in increasing food production. Moreover, properly allocating crops in space and time is a practical way to ensure food production. Climate change, dietary shifts, and other socio-economic drivers, which would shape the demand and supply side of food systems, should be taken into consideration during the decision-making on rational land management in respect of sustainable crop choice and allocation. And ifnally, crop-speciifc agricultural intensiifcation would play a bigger role in raising future food production either by increasing the yield per unit area of individual crops or by increasing the number of crops sown on a particular area of land. Yet, only when it is done sustainably is this a much more effective strategy to maximize food production by closing yield and harvest gaps.展开更多
China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though t...China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.展开更多
Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted ave...Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.展开更多
Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show ...Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show that from 1992 to 2004,the global cropland area increased by 840200 km^(2)(99.4%),but the grain yield increased only by 310 million t(29.1%);and from 2004 to 2015,the cropland area decreased by 39000 km^(2)(4.64%),but the grain yield increased by 370 million t(70.84%).This result showed that grain yield was not linearly correlated with cropland area,and delimiting the threshold of cropland protection may not guarantee food security.Combined with further correlation analysis,we found that the increase in the global grain yield was more closely related to the harvested area(R^(2)=0.94),which indicated that the harvested area is a more scientific and accurate indicator than cropland area in terms of guaranteeing food security.Therefore,if governments want to ensure the food security,they should choose a new and more accurate indicator:harvested area rather than cropland area.展开更多
Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change unde...Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change under the framework of sustainable development. In this paper, the authors analyze the annual rate of carbon productivity growth, the differences of carbon productivity of different countries, and the factors for enhancing carbon productivity. Consequently, the authors clarify their viewpoint that the annual rate of carbon productivity growth can be used to weigh the efforts that a country takes to address climate change, and propose policies and suggestions on promoting carbon production.展开更多
Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s...Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30-130 years and 25-234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCMI, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050.展开更多
文摘With development of modern geoscience, particularly development of environmental sciences, the contemporary soil science is undergoing great changes in both research contents and scope. Soil is not onlya certain substance or a certain independent natural historical body but also a spheric layer with peculiarstructure and functions in the earth system. From the viewpoint of the geo-biosphere system of earth, soilscience does deal not only with the soil substances per se but also more importantly with the relationshipsamong soil, the other spheres and the human survival environment in view of the "pedosphere". This is thenew orientation of soil science today and will affect profoundly the studies on the human survival environmentand global changes. To throw more light on this subject, the present paper intends to address the conceptionof pedosphere and its role in global changes. Also addressed are series of environmental issues in China andtheir relations to the global changes. Moreover, research orientation and priorities are indicated, includingexploitation and protection of the soil resources, soil fertility and sustainable agricultural development, construction of the ecological environment, and the material cycling in pedosphere and its relation to globalchanges.
文摘High altitude and high latitude regions on Earth are experiencing rapid changes in climate, with impacts on polar organisms and the environment. The persistent cold and sometimes inhospitable conditions create unique ecosystems and habitats for polar organisms.
文摘Dear Colleagues, We would like to invite you to submit manuscripts to a special issue of the journal Advances in Polar Science (APS) on "Response of Polar Organisms and Natural Environment to Global Changes".
文摘A review of the year’s international political and security situation In 2010, despite the generally stable international environment, significant changes occurred seen in international relations. This is due
文摘The future global climate changes induced by the increased atmospheric CO2 concentration is receiving much attention from the scientific community as well as the public. Model simulations and palaeoclimatic data studies show an evident change in temperature and precipitation over China will occur under conditions of the global warming. Possible scenarios of the future climates are given here for China on the basis of synthesizing model simulations and palaeoclimatic data. Most parts of China will experience an increase in temperature, but the warming may be more remarkable in winter in h1e northern half of the country. Increase in precipitation will be seen in nearly every parts of the eastern China, and it will be larger in North and Northeast China. Impacts of the climate changes on the national tourism are assessed. Regions suitable for tourisin development in terms of climate comfortable index will shift northward. Some scenic spots and toruism facilities will be damaged due to sea level rise and increased rainfall. Some regions will benefit from the dimate change, but the tourism industry as a whole will be negatively affected.
文摘Two ingressions occurred in the last glacial interstadial (50,00-25,000 a BP) and Holocene optimum (7,500-5,000 a BP) periods in Antercticregion. The grea expansion of Antarcic Ice Sheet appeared at last glacialmaximum (18,000 a BP) when Antarctic sea level was 100- 150 m lower thanthat at presat. Three times of glacial advances and rotreas occurred on thefront of Antarctic Ice Shed since 3,000 a BP. All these phenomena werecoordinated with global changes. In the past decades, records from Antercticice-free areas and ice cores testified that mvironmedl and climatic changesin Antarctic region have been coordinated with global changes since latePlelstocene. In the past decades, Antarctic inland was a little warming up andthe fron of the ice shed was slowly melting and ratreating due to the increaseof CO2 content in the atmosphere. The greenhouse effect will cause AntercticIce Sheet (especially on the ice shelves) to be partly melting away, but can notdestroy it. In this case the amplitude of sea level rise caused by the melting ofAntarctic ice will be less than 0.2 m within the coming five decades.
基金supported by the National Basic Research Program of China(973 program,2014CB954400)the National Natural Science Foundation of China(41401289).
文摘Soil-emitted N_(2)O contributes to two-thirds of global N_(2)O emissions,and is sensitive to global change.We used DayCent model to simulate major plant-soil N cycling processes under different global change scenarios in a typical temperate mixed forest in north-eastern China.Simulated scenarios included warming(T),elevated atmospheric CO_(2) concentration([CO_(2)])(C),increased N deposition(N)and precipitation(P),and their full factorial combinations.The responses of plant-soil nitrogen cycling processes including net N mineralization,plant N uptake,gross nitrification,denitrification and soil N_(2)O emission were examined.Concurrent increase of elevated[CO_(2)]and N deposition displayed most strong interactive effects on most fluxes.Using the results from experimental studies for evaluation,simulation uncertainty was highest under elevated[CO_(2)]and increased precipitation among the four global change factors.N deposition had a fundamental impact on soil N cycle and N_(2)O emission in our studied forest.Despite forest soil acting as a N sink for added N,scenarios which included increased N deposition showed higher cumulative soil N_(2)O emissions(summed up from 2001 to 2100).In particular,the scenario which included T,P,and N had the largest cumulative soil N_(2)O emission,which was a 24.4% increase over that under ambient conditions.Our study points to the importance of the interactive effects of global change factors on plant-soil N cycling and the necessity of multi-factor manipulation experiments.
文摘<p align="justify"> <span style="font-family:Verdana;">Physical concepts based on the Clausius-Clapeyron relation and on the thermodynamics and aerosol characteristics associated with updrafts, global climate models assuming different parametrizations and lightning-related output variables, and lightning-related data (thunderstorm days) are being used to infer the lightning incidence in a warmer planet, motivated by the global warming observed. In all cases, there are many gaps to be overcome making the lightning response to the global temperature increase still unpredicted. Values from almost 0% (no increase) to 100% have been estimated, being 10% the most common value. While the physical concepts address only part of the problem and the global climate models need to make many simple assumptions, lightning-relate data have strong time and space limitations. In this context, any new evidence should be considered as an important contribution to better understand how will be the lightning incidence in the future. In this article</span></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:'Minion Pro Capt','serif';"><span style="font-family:Verdana;"> we described new results about the occurrence of thunderstorms from 1850 to 2010 (a period of 160 years) in the city of Rio de Janeiro, in the Southeast of Brazil. During this period thunderstorm days were recorded in the same location, making this time series one of the longest series of this type available worldwide. The data support an increase of 21% in the mean annual thunderstorm days during the period, while surface temperature i</span><span><span style="font-family:Verdana;">ncreased by 0.6</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C during the period. Considering that the mean annua</span></span><span style="font-family:Verdana;">l number of thunderstorm in the beginning of this period was 29, we found an increase of one thunderstorm day per 0.1</span><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span><span style="font-family:Verdana;">C of increase in the surface temperature. Assuming that the number of lightning flashes per thunderstorm remains approximately constant during the period</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> this number corresponds to an increase in the lightning flash rate of approximately 35% per </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="text-align:left;widows:2;text-transform:none;background-color:#ffffff;font-style:normal;text-indent:0px;display:inline !important;font-family:Verdana;white-space:normal;orphans:2;float:none;letter-spacing:normal;color:#4f4f4f;font-weight:400;word-spacing:0px;font-variant-ligatures:normal;font-variant-caps:normal;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;">°</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">C of increase of temperature. In addition, considering that the increase of the global temperature during the period was almost the same that observed in Rio de Janeiro</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we can conclude that this increase in the lightning flash rate is due to the global warming with no effect of urban activity. Finally, we found that monthly thunderstorm days and monthly mean surface temperature show a linear correlation with a coefficient of 0.9 along the period.</span></span></span> </p>
基金partially supported by the National Natural Sci-ence Foundation of China(Grant No.32101309)National Key R&D Program of China(Grant No.2022YFF0802102)+1 种基金International Partnership Program of Chinese Academy of Sciences(Grant No.177GJHZ2022020BS)Youth Innovation Promotion Association CAS(2021050).
文摘The 21st century has seen an acceleration of global change,including climate change,elevated carbon dioxide,nitrogen deposition,and land-use intensification,which poses a significant threat to ecosystem functioning.Nev-ertheless,studies on the relationship between biodiversity and ecosystem functioning(BEF)have consistently demonstrated that biodiversity enhances ecosystem functioning and its stability,even in variable environmental conditions.These findings potentially indicate the critical role of biodiversity in promoting sustainable provi-sioning of ecosystem functioning under global change.Our paper provides a comprehensive review of current BEF research and the response of BEF to multiple global change factors.We demonstrate that(1)assessing the effects of biodiversity on ecosystem functioning requires consideration of multiple dimensions of diversity,such as diversity across multiple trophic levels(plants,animals,and microbes),multiple facets(taxonomy,functional traits,and phylogeny),and multiple spatial scales(local,regional,and landscape scales).(2)The interaction of multiple global change factors may lead to a greater reduction in biodiversity and ecosystem functioning than a single global change factor.(3)Multidimensional biodiversity regulates the response of ecosystem functioning to global change factors,indicating that high levels of multidimensional biodiversity can mitigate the negative impacts of global change on ecosystem functioning.Overall,we emphasize that recognizing the importance of multidimensional biodiversity is critical for sustaining ecosystem functioning.Therefore,prioritizing conserva-tion efforts to maintain and enhance all dimensions of biodiversity is essential to address the challenges of future global change.
文摘This article explains ongoing changes in global climate and their effect on the resurgence of vector and pathogen populations in various parts of the world.Today,major prevailing changes are the elevation of global temperature and accidental torrent rains,floods,droughts,and loss of productivity and food commodities.Due to the increase in water surface area and the longer presence of flood water,the breeding of insect vectors becomes very high;it is responsible for the emergence and re-emergence of so many communicable diseases.Due to the development of resistance to chemicals in insect pests,and pathogens and lack of control measures,communicable zoonotic diseases are remerging with high infectivity and mortality.This condition is becoming more alarming as the climate is favoring pathogen-host interactions and vector populations.Rapid changes seen in meteorology are promoting an unmanageable array of vector-borne infectious diseases,such as malaria,Japanese encephalitis,filarial,dengue,and leishmaniasis.Similarly,due to unhygienic conditions,poor sanitation,and infected ground and surface water outbreak of enteric infections such as cholera,vibriosis,and rotavirus is seen on the rise.In addition,parasitic infection ascariasis,fasciolosis,schistosomiasis,and dysentery cases are increasing.Today climate change is a major issue and challenge that needs timely quick solutions.Climate change is imposing non-adaptive forced human migration territorial conflicts,decreasing ecosystem productivity,disease outbreaks,and impelling unequal resource utilization.Rapid climate changes,parasites,pathogens,and vector populations are on the rise,which is making great threats to global health and the environment.This article highlighted the necessity to develop new strategies and control measures to cut down rising vector and pathogen populations in endemic areas.For finding quick solutions educational awareness,technology up-gradation,new vaccines,and safety measures have to be adopted to break the cycle of dreadful communicable diseases shortly.
文摘An aerial photographic coverage acquired on two consecutive days in October 2021 with a ground resolution of 20 cm and a spectral resolution of 4 bands (red, green, blue and near infrared), allowed to distinguish most of the classes of interest present in the intertidal zone of the Sado estuary. We explored the possibilities of thematic classification in the powerful and complex software ArcGIS Pro;we presented the methodology used in a detailed way that allows others with minimal knowledge of GIS to reproduce the classification process without having to decipher the specifics of the software. The classification implemented used ground truth from four classes related to the macro-occupations of the area. In a first phase we explore the standard algorithms with object-based capabilities, like K-Nearest Neighbor, Random Trees Forest and Support Vector Machine, and in a second phase we proceed to test three deep learning classifiers that provide semantic segmentation: a U-Net configuration, a Pyramid Scene Parsing Network and DeepLabV3. The resulting classifications were quantitatively evaluated with a set of 500 control points in a test area of 37,500 × 12,500 pixels, using confusion matrices and resorting to Cohen’s kappa statistic and the concept of global accuracy, achieving a Kappa in the range [0.72, 0.81] and a global accuracy between 88.9% and 92.9%;the option U-Net had the most interesting results. This work establishes a methodology to provide a baseline for assessing future changes in the distribution of Sado estuarine habitats, which can be replicated in other wetland ecosystems for conservation and management purposes.
基金supported by grants of National Key R&D Program of China(No.2016YFA0600401)National Nature Science Foundation of China(No.41672161)+1 种基金Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(164320H116)Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,and Key Laboratory of Virtual Geographic Environment(Nanjing Normal University)
文摘One-year-resolved and annually-counted stalagmite multi-proxies (j180, ~13C, and layer width) from Daoguan Cave, Guizhou Province revealed detailed variability regarding the Asian Summer Monsoon (ASM) and local humidity across Bond events (BE) in the PreboreaL During BEs 8 and 7, 1.5%o enrichments in jlSo values were generally consistent with high- to low-latitude climate changes. In detail, the decadal-scale minor j180 oscillations in BE8 were broadly less than the mean value, in contrast to the significant changes in local soil moisture derived from the j13C values and layer records. In the mid-BE7, jlSo variability was generally above the average level, and higher- amplitude variations were observed in the three proxy indicators. Wavelet analysis on the total jlSo time series and across the specific time windows of BEs 8 and 7 identified periodicities of about 130, 60, and 20-a, respectively. Exceptionally strong in BE7, the 60-a cycle, pervasively observed in instrumental studies, became prominent starting at 11.4 kaBP. Thus, glacial background conditions are important for suppressing the ASM intensity in BE8, while during BE7, tropical hydrological circulations were potentially actively involved. Consequently, climate internal oscillations, analogous to modern conditions, might have occurred in the distant past once the link between the tropical ocean and atmosphere was established as occurs today.
文摘Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north western belts of Pakistan are highly sensitive to deforestation and other LULC changes, which have profound impacts on various sectors of bio-physical and socio-economic systems. Assessment of LULC changes has high significance for protection, conservation and monitoring mountainous environment. The present study is an attempt to assess the landscape changes with particular reference to forest cover depletion in Kurram Agency located in the north western mountain belt of Pakistan. For detailed comparative analysis the study area has been divided into three sections, which coincide with the present administrative divisions of the Agency, i.e., Upper,Lower and Central Kurram. Temporal span of this study covers four decades. In this study, land use map of 1970 and land sat satellite imageries of 1987, 2000 and 2014 were used as spatial data sets. The images were processed and classified into six LULC classes through geospatial packages and change detection maps were prepared for each division and time period.Findings of the study reveal two trends in the four major LULC categories. Forest and rangeland have shrunk, on average, by 15% and 7.5% respectively while, bare soil and rocks outcrops have expanded by 89% and agriculture land by 7.2% in Kurram agency.The water bodies and snow cover have minor fluctuation in its land area. Major causes of shrinking greenery is attributed to high influx of Afghan refugees and high energy demand of growing population. However, with outflow of the refugees from Kurram agency the general trend in forest cover has reverted and deforestation rate has slowed down.
基金supported by Postdoctoral Funding from Jilin Province to Liping Shan(2020000147).
文摘Alien plant invasion success can be inhibited by two key biotic factors:native herbivores and plant diversity.However,few studies have experimentally tested whether these factors interact to synergistically resist invasion success,especially factoring in changing global environments(e.g.nutrient enrichment).Here we tested how the synergy between native herbivores and plant diversity affects alien plant invasion success in various nutrient conditions.For this purpose,we exposed alien plant species in potmesocosms to different levels of native plant diversity(4 vs.8 species),native generalist herbivores,and high and low soil nutrient levels.We found that generalist herbivores preferred alien plants to native plants,inhibiting invasion success in a native community.This inhibition was amplified by highly diverse native communities.Further,the amplified effect between herbivory and native plant diversity was independent of nutrient conditions.Our results suggest that a higher diversity of native communities can strengthen the resistance of native generalist herbivores to alien plant invasions by enhancing herbivory tolerance.The synergistic effect remains in force in nutrient-enriched habitats that are always invaded by alien plant species.Our results shed light on the effective control of plant invasions using multi-trophic means,even in the face of future global changes.
基金supported and financed by the National Basic Research Program of China(973 Program,2010CB951504)the National Natural Science Foundation of China(41271112)the National Non-Profit Institute Research Grant of Chinese Academy of Agricultural Sciences,China(IARRP-2014-2)
文摘To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequences require sustainable agricultural land use practices as supplementary to advanced biotechnology and agronomy. This review paper, from a land system perspective, systematically proposed and analyzed three interactive strategies that could possibly raise future food production under global change. By reviewing the current literatures, we suggest that cropland expansion is less possible amid iferce land competition, and it is likely to do less in increasing food production. Moreover, properly allocating crops in space and time is a practical way to ensure food production. Climate change, dietary shifts, and other socio-economic drivers, which would shape the demand and supply side of food systems, should be taken into consideration during the decision-making on rational land management in respect of sustainable crop choice and allocation. And ifnally, crop-speciifc agricultural intensiifcation would play a bigger role in raising future food production either by increasing the yield per unit area of individual crops or by increasing the number of crops sown on a particular area of land. Yet, only when it is done sustainably is this a much more effective strategy to maximize food production by closing yield and harvest gaps.
基金Project supported by the Canadian International Development Agency, Canada and the Chinese Academy of Sciences,China (No. KZCX2-413).
文摘China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.
文摘Soil organic carbon density and its related characteristics of 41 soil types all over China were analyzed by using data of 745 soil profiles , and size of soil carbon pool was estimated. As a result, area-weighted averages of these 41 soil types for bulk density, profile depth, organic carbon content and profile carbon were 1. 24 tC/m3, 86. 2 cm, 3. 04% and 19. 7 kg C/m2 respectively. Total size of soil carbon pool was 185. 68 × 1009tC, which is 29 times of that in terrestrial biomass of China and 12. 6% of global soil carbon pools. Because of its huge carbon pool, soil of China plays an important role in global carbon cycle.
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB40000000,XDA23060100)National Natural Science Foundation of China(No.42077455)+1 种基金Western Light Talent Program(Category A)(No.2018-99)United Fund of Karst Science Research Center(No.U1612441)。
文摘Cropland area has long been used as a key indicator of food security.However,grain yield is not solely controlled by the area of the cropland.Therefore,we proposed a new indicator to assess food security.Results show that from 1992 to 2004,the global cropland area increased by 840200 km^(2)(99.4%),but the grain yield increased only by 310 million t(29.1%);and from 2004 to 2015,the cropland area decreased by 39000 km^(2)(4.64%),but the grain yield increased by 370 million t(70.84%).This result showed that grain yield was not linearly correlated with cropland area,and delimiting the threshold of cropland protection may not guarantee food security.Combined with further correlation analysis,we found that the increase in the global grain yield was more closely related to the harvested area(R^(2)=0.94),which indicated that the harvested area is a more scientific and accurate indicator than cropland area in terms of guaranteeing food security.Therefore,if governments want to ensure the food security,they should choose a new and more accurate indicator:harvested area rather than cropland area.
基金Major Project of Key Research Bases of Humanities and Social Sciences of Ministry of Education(05JJD630035)Major International Joint Research Program Founded by National Natural Science Foundation of China(50246003)Major Project(90410016)
文摘Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change under the framework of sustainable development. In this paper, the authors analyze the annual rate of carbon productivity growth, the differences of carbon productivity of different countries, and the factors for enhancing carbon productivity. Consequently, the authors clarify their viewpoint that the annual rate of carbon productivity growth can be used to weigh the efforts that a country takes to address climate change, and propose policies and suggestions on promoting carbon production.
基金The research was financially supported by the Pro-gram for Energy Research and Develop (PERD) of Canada"The Hundred-Talent Project" of the Chinese Academy of Sciences(0108140).
文摘Interactions of fire cycle and plant species' reproductive characteristics could determine vegetation distribution pattern of a landscape. In Canada's boreal region, fire cycles before the Little Ice Age (c. 1850s) ranged from 30-130 years and 25-234 years afterwards until the settlement period (c. 1930s) when longer fire cycles occurred in response to climatic change and human interference. Analysis indicated that fire cycles were correlated with growing season (April-October) temperature and precipitation departure from the 1961-1990 normal, varying by regions. Assuming that wildfires will respond to future warming similar to the manner during the past century, an assessment using climatic change scenarios CGCMI, CGCM2 and HadCM2 indicates fire cycles would divert to a range of 80-140 years in the west taiga shield, more than 700 years for the east boreal shield and east taiga shield, and 300-400 years for the boreal plains in 2050.