This paper is concerned with the Cauchy problem for a semilinear wave equation with a time-dependent damping.In case that the space dimension n=1 and the nonlinear power is bigger than 2,the life-span T(ε)and global ...This paper is concerned with the Cauchy problem for a semilinear wave equation with a time-dependent damping.In case that the space dimension n=1 and the nonlinear power is bigger than 2,the life-span T(ε)and global existence of the classical solution to the problem has been investigated in a unified way.More precisely,with respect to different values of an index K,which depends on the time-dependent damping and the nonlinear term,the life-span T(ε)can be estimated below byε-p/1-k,e^(ε)-p or+∞,where e is the scale of the compact support of the initial data.展开更多
基金supported by the NSF of China(11731007)the Priority Academic Program Development of Jiangsu Higher Education Institutions,and the NSF of Jiangsu Province(BK20181381,BK20221320).
文摘This paper is concerned with the Cauchy problem for a semilinear wave equation with a time-dependent damping.In case that the space dimension n=1 and the nonlinear power is bigger than 2,the life-span T(ε)and global existence of the classical solution to the problem has been investigated in a unified way.More precisely,with respect to different values of an index K,which depends on the time-dependent damping and the nonlinear term,the life-span T(ε)can be estimated below byε-p/1-k,e^(ε)-p or+∞,where e is the scale of the compact support of the initial data.