期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Global Pinching Theorem for Compact Surfaces in S^3 with Constant Mean Curvature
1
作者 Hu Zejun Li Haizhong Hu Zejun Department of Mathematics Zhengzhou University Zhengzhou,450052 ChinaLi Haizhong Department of Applied Mathematics Tsinghua University Beijing,100084 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1996年第2期126-132,共7页
Let M be a compact minimal surface in S<sup>3</sup>.Y.J.Hsu proved that if ‖S‖<sub>2</sub>≤2(2<sup>1/2</sup>π, then M is either the equatorial sphere or the Clifford torus,where... Let M be a compact minimal surface in S<sup>3</sup>.Y.J.Hsu proved that if ‖S‖<sub>2</sub>≤2(2<sup>1/2</sup>π, then M is either the equatorial sphere or the Clifford torus,where 5" is the square of the length of the second fundamental form of M,‖·‖<sub>2</sub> denotes the L<sup>2</sup>-norm on M.In this paper,we generalize Hsu’s result to any compact surfaces in S<sup>3</sup> with constant mean curvature. 展开更多
关键词 Compact surface Constant mean curvature global pinching
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部