期刊文献+
共找到962篇文章
< 1 2 49 >
每页显示 20 50 100
An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
1
作者 Yuchen Zhou Hongtao Huo +5 位作者 Zhiwen Hou Lingbin Bu Yifan Wang Jingyi Mao Xiaojun Lv Fanliang Bu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期537-563,共27页
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca... Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements. 展开更多
关键词 graph neural networks hyperbolic graph convolutional neural networks deep graph convolutional neural networks message passing framework
下载PDF
An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network
2
作者 Liang Xue Shuai Xu +4 位作者 Jie Nie Ji Qin Jiang-Xia Han Yue-Tian Liu Qin-Zhuo Liao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2475-2484,共10页
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively... The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages. 展开更多
关键词 Shale gas global sensitivity convolutional neural network DATA-DRIVEN
下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
3
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
下载PDF
Smart Lung Tumor Prediction Using Dual Graph Convolutional Neural Network 被引量:1
4
作者 Abdalla Alameen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期369-383,共15页
A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatm... A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatment outcomes,develop more effective medical devices,or arrive at a more accurate diagnosis.This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction.The classification process was conducted with the aid of a convolu-tional neural network(CNN)with dual graphs.Evaluation of the performance of the fused model is carried out with various methods.In the initial input Com-puter Tomography(CT)image,150 images are pre-processed and segmented to identify cancerous and non-cancerous nodules.The geometrical,statistical,struc-tural,and texture features are extracted from the preprocessed segmented image using various methods such as Gray-level co-occurrence matrix(GLCM),Histo-gram-oriented gradient features(HOG),and Gray-level dependence matrix(GLDM).To select the optimal features,a novel fusion approach known as Whale-Bacterial Foraging Optimization is proposed.For the classification of lung cancer,dual graph convolutional neural networks have been employed.A com-parison of classification algorithms and optimization algorithms has been con-ducted.According to the evaluated results,the proposed fused algorithm is successful with an accuracy of 98.72%in predicting lung tumors,and it outper-forms other conventional approaches. 展开更多
关键词 CNN dual graph convolutional neural network GLCM GLDM HOG image processing lung tumor prediction whale bacterial foraging optimization
下载PDF
Sampling Methods for Efficient Training of Graph Convolutional Networks:A Survey 被引量:5
5
作者 Xin Liu Mingyu Yan +3 位作者 Lei Deng Guoqi Li Xiaochun Ye Dongrui Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第2期205-234,共30页
Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other meth... Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods. 展开更多
关键词 Efficient training graph convolutional networks(GCNs) graph neural networks(GNNs) sampling method
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
6
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction 被引量:2
7
作者 Jihua Ye Shengjun Xue Aiwen Jiang 《Digital Communications and Networks》 SCIE CSCD 2022年第3期343-350,共8页
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network... Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines. 展开更多
关键词 Multi-step traffic flow prediction graph convolutional network External factors Attentional encoder network spatiotemporal correlation
下载PDF
Using BlazePose on Spatial Temporal Graph Convolutional Networks for Action Recognition 被引量:1
8
作者 Motasem S.Alsawadi El-Sayed M.El-kenawy Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2023年第1期19-36,共18页
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac... The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively. 展开更多
关键词 Action recognition BlazePose graph neural network OpenPose SKELETON spatial temporal graph convolution network
下载PDF
Identification of Key Links in Electric Power Operation Based-Spatiotemporal Mixing Convolution Neural Network
9
作者 Lei Feng Bo Wang +2 位作者 Fuqi Ma Hengrui Ma Mohamed AMohamed 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1487-1501,共15页
As the scale of the power system continues to expand,the environment for power operations becomes more and more complex.Existing risk management and control methods for power operations can only set the same risk dete... As the scale of the power system continues to expand,the environment for power operations becomes more and more complex.Existing risk management and control methods for power operations can only set the same risk detection standard and conduct the risk detection for any scenario indiscriminately.Therefore,more reliable and accurate security control methods are urgently needed.In order to improve the accuracy and reliability of the operation risk management and control method,this paper proposes a method for identifying the key links in the whole process of electric power operation based on the spatiotemporal hybrid convolutional neural network.To provide early warning and control of targeted risks,first,the video stream is framed adaptively according to the pixel changes in the video stream.Then,the optimized MobileNet is used to extract the feature map of the video stream,which contains both time-series and static spatial scene information.The feature maps are combined and non-linearly mapped to realize the identification of dynamic operating scenes.Finally,training samples and test samples are produced by using the whole process image of a power company in Xinjiang as a case study,and the proposed algorithm is compared with the unimproved MobileNet.The experimental results demonstrated that the method proposed in this paper can accurately identify the type and start and end time of each operation link in the whole process of electric power operation,and has good real-time performance.The average accuracy of the algorithm can reach 87.8%,and the frame rate is 61 frames/s,which is of great significance for improving the reliability and accuracy of security control methods. 展开更多
关键词 Security risk management key links identifications electric power operation spatiotemporal mixing convolution neural network MobileNet network
下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
10
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
下载PDF
GCN-LSTM spatiotemporal-network-based method for post-disturbance frequency prediction of power systems 被引量:3
11
作者 Dengyi Huang Hao Liu +1 位作者 Tianshu Bi Qixun Yang 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期96-107,共12页
Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly importa... Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly important.These characteristics can provide effective support in coordinated security control.However,traditional model-based frequencyprediction methods cannot satisfactorily meet the requirements of online applications owing to the long calculation time and accurate power-system models.Therefore,this study presents a rolling frequency-prediction model based on a graph convolutional network(GCN)and a long short-term memory(LSTM)spatiotemporal network and named as STGCN-LSTM.In the proposed method,the measurement data from phasor measurement units after the occurrence of disturbances are used to construct the spatiotemporal input.An improved GCN embedded with topology information is used to extract the spatial features,while the LSTM network is used to extract the temporal features.The spatiotemporal-network-regression model is further trained,and asynchronous-frequency-sequence prediction is realized by utilizing the rolling update of measurement information.The proposed spatiotemporal-network-based prediction model can achieve accurate frequency prediction by considering the spatiotemporal distribution characteristics of the frequency response.The noise immunity and robustness of the proposed method are verified on the IEEE 39-bus and IEEE 118-bus systems. 展开更多
关键词 Synchronous phasor measurement Frequency-response prediction spatiotemporal distribution characteristics Improved graph convolutional network Long short-term memory network spatiotemporal-network structure
下载PDF
Residual Network with Enhanced Positional Attention and Global Prior for Clothing Parsing 被引量:1
12
作者 WANG Shaoyu HU Yun +3 位作者 ZHU Yian YE Shaoping QIN Yanxia SHI Xiujin 《Journal of Donghua University(English Edition)》 CAS 2022年第5期505-510,共6页
Clothing parsing, also known as clothing image segmentation, is the problem of assigning a clothing category label to each pixel in clothing images. To address the lack of positional and global prior in existing cloth... Clothing parsing, also known as clothing image segmentation, is the problem of assigning a clothing category label to each pixel in clothing images. To address the lack of positional and global prior in existing clothing parsing algorithms, this paper proposes an enhanced positional attention module(EPAM) to collect positional information in the vertical direction of each pixel, and an efficient global prior module(GPM) to aggregate contextual information from different sub-regions. The EPAM and GPM based residual network(EG-ResNet) could effectively exploit the intrinsic features of clothing images while capturing information between different scales and sub-regions. Experimental results show that the proposed EG-ResNet achieves promising performance in clothing parsing of the colorful fashion parsing dataset(CFPD)(51.12% of mean Intersection over Union(mIoU) and 92.79% of pixel-wise accuracy(PA)) compared with other state-of-the-art methods. 展开更多
关键词 clothing parsing convolutional neural network positional attention global prior
下载PDF
GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法
13
作者 卢晓凯 封军 +2 位作者 韩永强 王皓 陈恩红 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1917-1929,共13页
在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的... 在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的建模,然后将感知机-混合器架构与图神经网络结合,得到图-感知机混合器模型对用户兴趣进行充分挖掘.GraphMLP-Mixer具有2个显著优势:一是能够有效捕捉用户行为的全局依赖性,同时减轻信息过压缩问题;二是其时间与空间效率显著提高,其复杂度与用户交互行为的数量成线性关系,优于现有基于GNN多行为序列推荐模型.在3个真实的公开数据集上进行实验,大量的实验结果验证了GraphMLP-Mixer在处理多行为序列推荐问题时的有效性和高效性. 展开更多
关键词 多行为建模 序列推荐 图神经网络 MLP架构 全局物品图
下载PDF
Global and Graph Encoded Local Discriminative Region Representation for Scene Recognition
14
作者 Chaowei Lin Feifei Lee +2 位作者 JiaweiCai HanqingChen Qiu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期985-1006,共22页
Scene recognition is a fundamental task in computer vision,which generally includes three vital stages,namely feature extraction,feature transformation and classification.Early research mainly focuses on feature extra... Scene recognition is a fundamental task in computer vision,which generally includes three vital stages,namely feature extraction,feature transformation and classification.Early research mainly focuses on feature extraction,but with the rise of Convolutional Neural Networks(CNNs),more and more feature transformation methods are proposed based on CNN features.In this work,a novel feature transformation algorithm called Graph Encoded Local Discriminative Region Representation(GEDRR)is proposed to find discriminative local representations for scene images and explore the relationship between the discriminative regions.In addition,we propose a method using the multi-head attention module to enhance and fuse convolutional feature maps.Combining the two methods and the global representation,a scene recognition framework called Global and Graph Encoded Local Discriminative Region Representation(G2ELDR2)is proposed.The experimental results on three scene datasets demonstrate the effectiveness of our model,which outperforms many state-of-the-arts. 展开更多
关键词 Scene recognition convolutional neural networks multi-head attention class activation mapping graph convolutional networks
下载PDF
Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks
15
作者 Motasem S.Alsawadi Miguel Rio 《Computers, Materials & Continua》 SCIE EI 2022年第6期4643-4658,共16页
Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the ... Action recognition has been recognized as an activity in which individuals’behaviour can be observed.Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events.A skeleton representation of the human body has been proven to be effective for this task.The skeletons are presented in graphs form-like.However,the topology of a graph is not structured like Euclideanbased data.Therefore,a new set of methods to perform the convolution operation upon the skeleton graph is proposed.Our proposal is based on the Spatial Temporal-Graph Convolutional Network(ST-GCN)framework.In this study,we proposed an improved set of label mapping methods for the ST-GCN framework.We introduce three split techniques(full distance split,connection split,and index split)as an alternative approach for the convolution operation.The experiments presented in this study have been trained using two benchmark datasets:NTU-RGB+D and Kinetics to evaluate the performance.Our results indicate that our split techniques outperform the previous partition strategies and aremore stable during training without using the edge importance weighting additional training parameter.Therefore,our proposal can provide a more realistic solution for real-time applications centred on daily living recognition systems activities for indoor environments. 展开更多
关键词 Skeleton split strategies spatial temporal graph convolutional neural networks skeleton joints action recognition
下载PDF
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
16
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate Separable spatiotemporal convolution Dimension separable attention MULTI-SCALE neural network
下载PDF
Point Cloud Classification Network Based on Graph Convolution and Fusion Attention Mechanism
17
作者 Tengteng Song Zhao Li +1 位作者 Zhenguo Liu Yizhi He 《Journal of Computer and Communications》 2022年第9期81-95,共15页
The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification ... The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification methods have some shortcomings when extracting point cloud features, such as insufficient extraction of local information and overlooking the information in other neighborhood features in the point cloud, and not focusing on the point cloud channel information and spatial information. To solve the above problems, a point cloud classification network based on graph convolution and fusion attention mechanism is proposed to achieve more accurate classification results. Firstly, the point cloud is regarded as a node on the graph, the k-nearest neighbor algorithm is used to compose the graph and the information between points is dynamically captured by stacking multiple graph convolution layers;then, with the assistance of 2D experience of attention mechanism, an attention mechanism which has the capability to integrate more attention to point cloud spatial and channel information is introduced to increase the feature information of point cloud, aggregate local useful features and suppress useless features. Through the classification experiments on ModelNet40 dataset, the experimental results show that compared with PointNet network without considering the local feature information of the point cloud, the average classification accuracy of the proposed model has a 4.4% improvement and the overall classification accuracy has a 4.4% improvement. Compared with other networks, the classification accuracy of the proposed model has also been improved. 展开更多
关键词 graph Convolution neural network Attention Mechanism Modelnet40 Point Cloud Classification
下载PDF
A novel spatiotemporal urban land change simulation model:Coupling transformer encoder,convolutional neural network,and cellular automata
18
作者 LI Haiyang LIU Zhao +3 位作者 LIN Xiaohan QIN Mingyang YE Sijing GAO Peichao 《Journal of Geographical Sciences》 SCIE CSCD 2024年第11期2263-2287,共25页
Land use and land cover change(LUCC)process exhibits spatial correlation and temporal dependency.Accurate extraction of spatiotemporal features is important in enhancing the modeling capabilities of LUCC.Cellular auto... Land use and land cover change(LUCC)process exhibits spatial correlation and temporal dependency.Accurate extraction of spatiotemporal features is important in enhancing the modeling capabilities of LUCC.Cellular automaton(CA)models,recognized as powerful tools for simulating dynamic LUCC processes,are traditionally applied in LUCC,focusing on time-slice driving factor data,often neglecting the temporal dimension.However,the transformer architecture,a highly acclaimed model in machine learning,has been rarely integrated into CA models for the simulation of dynamic LUCC processes.To fill this gap,we proposed a novel spatiotemporal urban LUCC simulation model,namely,transformer-convolutional neural network(TC)-CA.Based on CA models that involve the utilization of a convolutional neural network(CNN)for extracting latent spatial features,TC-CA extends this paradigm by incorporating a transformer architecture to extract spatiotemporal information from temporal driving factor data and temporal spatial features.The evaluation results with Wuxi city as a study area indicated the advantage of our proposed TC-CA against random forest-CA,conventional CNN-CA,artificial neural network-CA,and transformer-CA.Compared with the three non-transformer-based CAs,the TC-CA improved the figure of merit by up to 2.85%-8.14%.This study contributes a fresh spatiotemporal perspective and transformer approach to the field of LUCC modeling. 展开更多
关键词 land use and land cover change TRANSFORMER cellular automaton convolutional neural network spatiotemporal features
原文传递
ResGraphNet: GraphSAGE with embedded residual module for prediction of global monthly mean temperature
19
作者 Ziwei Chen Zhiguo Wang +1 位作者 Yang Yang Jinghuai Gao 《Artificial Intelligence in Geosciences》 2022年第1期148-156,共9页
Data-driven prediction of time series is significant in many scientific research fields such as global climate change and weather forecast.For global monthly mean temperature series,considering the strong potential of... Data-driven prediction of time series is significant in many scientific research fields such as global climate change and weather forecast.For global monthly mean temperature series,considering the strong potential of deep neural network for extracting data features,this paper proposes a data-driven model,ResGraphNet,which improves the prediction accuracy of time series by an embedded residual module in GraphSAGE layers.The experimental results of a global mean temperature dataset,HadCRUT5,show that compared with 11 traditional prediction technologies,the proposed ResGraphNet obtains the best accuracy.The error indicator predicted by the proposed ResGraphNet is smaller than that of the other 11 prediction models.Furthermore,the performance on seven temperature datasets shows the excellent generalization of the ResGraphNet.Finally,based on our proposed ResGraphNet,the predicted 2022 annual anomaly of global temperature is 0.74722℃,which provides confidence for limiting warming to 1.5℃ above pre-industrial levels. 展开更多
关键词 graph neural network graphSAGE ResNet global temperature prediction
下载PDF
A Graph with Adaptive AdjacencyMatrix for Relation Extraction
20
作者 Run Yang YanpingChen +1 位作者 Jiaxin Yan Yongbin Qin 《Computers, Materials & Continua》 SCIE EI 2024年第9期4129-4147,共19页
The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes de... The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models. 展开更多
关键词 Relation extraction graph convolutional neural network adaptive adjacency matrix
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部