期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
整体的E.Borel定理 被引量:2
1
作者 吴兴玲 《贵州科学》 1998年第4期256-260,共5页
E.Borel定理是局部奇点理论中的一个重要结论:若给定C~∞函数芽的序列则存在-C~∞函数芽,使得文将推广这一定理,得到关于在整个空间上的C~∞函数的相应的整体结果:给定在R^n的-C~∞函数列,存在R^n×R上的-C~∞函数f:R^n... E.Borel定理是局部奇点理论中的一个重要结论:若给定C~∞函数芽的序列则存在-C~∞函数芽,使得文将推广这一定理,得到关于在整个空间上的C~∞函数的相应的整体结果:给定在R^n的-C~∞函数列,存在R^n×R上的-C~∞函数f:R^n×R→R。 展开更多
关键词 整体性 borel定理 局部奇点理论 C^∞函数
下载PDF
On Global General Solutions of Complex Normal Polynomial Systems
2
作者 赵晓强 秦元勋 《Science China Mathematics》 SCIE 1993年第4期394-407,共14页
In this paper, using the Strong Rooted Theorem of complex polynomial systems we prove the existence of global general solutions of a class of complex polynomial systems, discuss the qualitative structure of global gen... In this paper, using the Strong Rooted Theorem of complex polynomial systems we prove the existence of global general solutions of a class of complex polynomial systems, discuss the qualitative structure of global general solutions of normal polynomial systems, and obtain their representation theorem. Finally, we give some applications of the theorem. 展开更多
关键词 eomplex POLYNOMIAL system SINGULAR point at INFINITY STRONG rooted theorem global general solution.
原文传递
On a non-abelian invariant on complex surfaces of general type Dedicated to Professor Sheng GONG on the occasion of his 75th birthday
3
作者 CHEUNG Wing-Sum WONG Bun 《Science China Mathematics》 SCIE 2006年第12期1897-1900,共4页
In this paper,we give certain homotopy and diffeomorphism versions as a generalization to an earlier result due to W.S.Cheung,Bun Wong and Stephen S.T.Yau concerning a local rigidity problem of the tangent bundle over... In this paper,we give certain homotopy and diffeomorphism versions as a generalization to an earlier result due to W.S.Cheung,Bun Wong and Stephen S.T.Yau concerning a local rigidity problem of the tangent bundle over compact surfaces of general type. 展开更多
关键词 Chern numbers complex surfaces of general type coholomogy group local moduli local deformation space Miyaoka-Yau inequality Yau's global rigidity theorem Yau's uniformization theorem.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部