Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique,...A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global e...In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.展开更多
Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constru...Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.展开更多
This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constan...This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.展开更多
This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point,...This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.展开更多
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som...This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.展开更多
Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on del...Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.展开更多
This paper proposes a method for the stability analysis of deterministic switched systems.Two motivational examples are introduced (nonholonomic system and constrained pendulum).The finite collection of models consi...This paper proposes a method for the stability analysis of deterministic switched systems.Two motivational examples are introduced (nonholonomic system and constrained pendulum).The finite collection of models consists of nonlinear models,and a switching sequence is arbitrary.It is supposed that there is no jump in the state at switching instants,and there is no Zeno behavior,i.e.,there is a finite number of switches on every bounded interval.For the analysis of deterministic switched systems,the multiple Lyapunov functions are used,and the global exponential stability is proved.The exponentially stable equilibrium of systems is relevant for practice because such systems are robust to perturbations.展开更多
In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generaliz...In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.展开更多
The paper is devoted to periodic attractor of delayed Hopfield neural networks with time-varying. By constructing Lyapunov functionals and using inequality techniques, some new sufficient criteria are obtained to guar...The paper is devoted to periodic attractor of delayed Hopfield neural networks with time-varying. By constructing Lyapunov functionals and using inequality techniques, some new sufficient criteria are obtained to guarantee the existence and global exponential stability of periodic attractor. Our results improve and extend some existing ones in [13-14]. One example is also worked out to demonstrate the advantages of our results.展开更多
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided...The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.展开更多
By using the properties of nonnegative matrices and techniques of differential inequalities,some sufficient conditions for the global exponential stability of cellular neural networks with time delays were obtained.Th...By using the properties of nonnegative matrices and techniques of differential inequalities,some sufficient conditions for the global exponential stability of cellular neural networks with time delays were obtained.The criteria do not require such conditions as boundedness and differentiability of activation functions.The conditions of the theorem were verified.展开更多
Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iterat...Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.展开更多
In this note, we would like to point out that (i) of Corollary 1 given by Zhang et al. (cf Commun. Theor. Phys. 39 (2003) 381) is incorrect in general.
The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential in-equality techniques, some su...The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential in-equality techniques, some sufficient criteria for the global exponential stability and the exponential convergence rate of the equilibrium point of the system are obtained. The criteria do not require the activation functions to be differentiable or monotone nondecreasing. Some stability results from previous works are extended and improved. Comparisons are made to demonstrate the advantage of our results.展开更多
The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robus...The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.展开更多
The stability of a class of delayed cellular neural networks (DCNN) with or without noise perturbation is studied. After presenting a simple and easily checkable condition for the global exponential stability of a d...The stability of a class of delayed cellular neural networks (DCNN) with or without noise perturbation is studied. After presenting a simple and easily checkable condition for the global exponential stability of a deterministic system, we further investigate the case with noise perturbation. When DCNN is perturbed by external noise, the system is globally stable. An important fact is that, when the system is perturbed by internal noise, it is globally exponentially stable only if the total noise strength is within a certain bound. This is significant since the stochastic resonance phenomena have been found to exist in many nonlinear systems.展开更多
This paper is concerned with the stability of neural networks with time-varying delays. Under assumption that the nonlinear stimulate functions are Lipschitz continuous, by means of generalized Halanay inequalities, D...This paper is concerned with the stability of neural networks with time-varying delays. Under assumption that the nonlinear stimulate functions are Lipschitz continuous, by means of generalized Halanay inequalities, Dini's derivative and functional analysis techniques, several globally exponential stability criteria are established, which are only dependent on the parameters of the system.展开更多
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
基金Supported by the Distinguished Expert Science Foundation of Naval Aeronautical Engineering Institutethe Younger Foundation of Yantai University (SX06Z9)
文摘A class of generalized Cohen-Grossberg neural networks(CGNNs) with variable de- lays are investigated. By introducing a new type of Lyapunov functional and applying the homeomorphism theory and inequality technique, some new conditions axe derived ensuring the existence and uniqueness of the equilibrium point and its global exponential stability for CGNNs. These results obtained are independent of delays, develop the existent outcome in the earlier literature and are very easily checked in practice.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
基金supported by 973 Programs (No.2008CB317110)the Key Project of Chinese Ministry of Education (No.107098)+1 种基金Sichuan Province Project for Applied Basic Research (No.2008JY0052)the Project for Academic Leader and Group of UESTC
文摘In this paper, the global exponential robust stability of neural networks with ume-varying delays is investigated. By using nonnegative matrix theory and the Halanay inequality, a new sufficient condition for global exponential robust stability is presented. It is shown that the obtained result is different from or improves some existing ones reported in the literatures. Finally, some numerical examples and a simulation are given to show the effectiveness of the obtained result.
文摘Some global properties such as global attractivity and global exponential stability for delayed Hopfield neural networks model, under the weaker assumptions on nonlinear activation functions, are concerned. By constructing suitable Liapunov function, some simpler criteria for global attractivity and global exponential stability for Hopfield continuous neural network,; with time delays are presented.
基金supported by the National Natural Science Foundation of China (No.60574001)Program for New Century Excellent Talents in University (No.050485)Program for Innovative Research Team of Jiangnan University
文摘This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
基金Project supported by the National Natural Science Foundations of China(Grant No.70871056)the Society Science Foundation from Ministry of Education of China(Grant No.08JA790057)the Advanced Talents'Foundation and Student's Foundation of Jiangsu University,China(Grant Nos.07JDG054 and 07A075)
文摘This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.
基金supported by National Natural Science Foundation of China (Grant No 60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)Program for Innovative Research Team of Jiangnan University of China
文摘This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.
文摘Some sufficient conditions for the global exponential stability and lower bounds on the rate of exponential convergence of the cellular neural networks with delay (DCNNs) are obtained by means of a method based on delay differential inequality. The method, which does not make use of any Lyapunov functional, is simple and valid for the stability analysis of neural networks with delay. Some previously established results in this paper are shown to be special casses of the presented result.
基金supported by the Ministry of Science and Technological Development of the Republic of Serbia (No. TR-3326)
文摘This paper proposes a method for the stability analysis of deterministic switched systems.Two motivational examples are introduced (nonholonomic system and constrained pendulum).The finite collection of models consists of nonlinear models,and a switching sequence is arbitrary.It is supposed that there is no jump in the state at switching instants,and there is no Zeno behavior,i.e.,there is a finite number of switches on every bounded interval.For the analysis of deterministic switched systems,the multiple Lyapunov functions are used,and the global exponential stability is proved.The exponentially stable equilibrium of systems is relevant for practice because such systems are robust to perturbations.
文摘In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.
基金Foundation item: Supported by the National Science Foundation of Hunan Provincial Education Department (06C792 07C700)
文摘The paper is devoted to periodic attractor of delayed Hopfield neural networks with time-varying. By constructing Lyapunov functionals and using inequality techniques, some new sufficient criteria are obtained to guarantee the existence and global exponential stability of periodic attractor. Our results improve and extend some existing ones in [13-14]. One example is also worked out to demonstrate the advantages of our results.
基金the Science Foundation of Guangdong Province in China
文摘The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.
基金the Foundation of Technology Project of Chongqing Education Commission (No. 041503)
文摘By using the properties of nonnegative matrices and techniques of differential inequalities,some sufficient conditions for the global exponential stability of cellular neural networks with time delays were obtained.The criteria do not require such conditions as boundedness and differentiability of activation functions.The conditions of the theorem were verified.
基金Foundation item: Projects(60835005, 90820302) supported by the National Natural Science Foundation of China Project(2007CB311001) supported by the National Basic Research Program of China
文摘Globally exponential stability (which implies convergence and uniqueness) of their classical iterative algorithm is established using methods of heat equations and energy integral after embedding the discrete iteration into a continuous flow. The stability condition depends explicitly on smoothness of the image sequence, size of image domain, value of the regularization parameter, and finally discretization step. Specifically, as the discretization step approaches to zero, stability holds unconditionally. The analysis also clarifies relations among the iterative algorithm, the original variation formulation and the PDE system. The proper regularity of solution and natural images is briefly surveyed and discussed. Experimental results validate the theoretical claims both on convergence and exponential stability.
文摘In this note, we would like to point out that (i) of Corollary 1 given by Zhang et al. (cf Commun. Theor. Phys. 39 (2003) 381) is incorrect in general.
基金National Natural Science Foundation of China (No70471049)
文摘The global exponential stability of Cohen-Grossberg neural networks with time-varying delays is studied. By constructing several suitable Lyapunov functionals and utilizing differential in-equality techniques, some sufficient criteria for the global exponential stability and the exponential convergence rate of the equilibrium point of the system are obtained. The criteria do not require the activation functions to be differentiable or monotone nondecreasing. Some stability results from previous works are extended and improved. Comparisons are made to demonstrate the advantage of our results.
基金Supported by the Natural Science Foundation of Shandong Province (ZR2010FM038,ZR2010FL017)
文摘The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.
基金the National Natural Science Foundation of China(No.10771155)the Special Foundation for the Authors of National Excellent Doctoral Dissertations of China(FANEDD)
文摘The stability of a class of delayed cellular neural networks (DCNN) with or without noise perturbation is studied. After presenting a simple and easily checkable condition for the global exponential stability of a deterministic system, we further investigate the case with noise perturbation. When DCNN is perturbed by external noise, the system is globally stable. An important fact is that, when the system is perturbed by internal noise, it is globally exponentially stable only if the total noise strength is within a certain bound. This is significant since the stochastic resonance phenomena have been found to exist in many nonlinear systems.
基金Supported by Science and Technology Plan Project of Guangzhou(2006J1-C0341)
文摘This paper is concerned with the stability of neural networks with time-varying delays. Under assumption that the nonlinear stimulate functions are Lipschitz continuous, by means of generalized Halanay inequalities, Dini's derivative and functional analysis techniques, several globally exponential stability criteria are established, which are only dependent on the parameters of the system.